【Java开发】Java面试七大专题第2篇:7. ArrayList,8. Iterator【附代码文档】

举报
小帅说java 发表于 2025/09/02 11:03:32 2025/09/02
【摘要】 基础篇 1. 二分查找 2. 冒泡排序 7. ArrayList 8. Iterator 9. LinkedList 10. HashMap 1)基本数据结构 2)树化与退化 3)索引计算 4)put 与扩容 5)并发问题 11. 单例模式 并发篇 1. 线程状态 3. wait vs sleep 4. lock vs synchronized 虚拟机篇 1. JVM 内存结构

🏆🏆🏆教程全知识点简介:基础篇 1. 二分查找 2. 冒泡排序 7. ArrayList 8. Iterator 9. LinkedList 10. HashMap 1)基本数据结构 2)树化与退化 3)索引计算 4)put 与扩容 5)并发问题 11. 单例模式 并发篇 1. 线程状态 3. wait vs sleep 4. lock vs synchronized 虚拟机篇 1. JVM 内存结构 4. 内存溢出 5. 类加载 6. 四种引用 7. finalize 框架篇 1. Spring refresh 流程 2. Spring bean 生命周期 6. Spring 注解 7. SpringBoot 自动配置原理 数据库篇 1. 隔离级别 2. 快照读与当前读 3. InnoDB vs MyISAM 4. 索引 索引基础 5. 查询语句执行流程 6. undo log 与 redo log 7. 锁 缓存篇 1. Redis 数据类型 2. keys 命令问题 3. 过期 key 的删除策略 5. 缓存问题 6. 缓存原子性 7. LRU Cache 实现 分布式篇 1. CAP 定理 2. Paxos 算法 4. Gossip 协议 5. 分布式通用设计 6. 一致性 Hash(补充)


📚📚👉👉👉code git仓库:   https://gitee.com/xiaoshuai112/Backend/blob/master/Java/Java面试七大专题/note.md 直接get🍅🍅

✨ 本教程项目亮点

🧠 知识体系完整:覆盖从基础原理、核心方法到高阶应用的全流程内容
💻 全技术链覆盖:完整前后端技术栈,涵盖开发必备技能
🚀 从零到实战:适合 0 基础入门到提升,循序渐进掌握核心能力
📚 丰富文档与代码示例:涵盖多种场景,可运行、可复用
🛠 工作与学习双参考:不仅适合系统化学习,更可作为日常开发中的查阅手册
🧩 模块化知识结构:按知识点分章节,便于快速定位和复习
📈 长期可用的技术积累:不止一次学习,而是能伴随工作与项目长期参考


🎯🎯🎯全教程总章节


🚀🚀🚀本篇主要内容

7. ArrayList

要求

  • 掌握 ArrayList 扩容规则

扩容规则

  1. ArrayList() 会使用长度为零的数组

  2. ArrayList(int initialCapacity) 会使用指定容量的数组

  3. public ArrayList(Collection<? extends E> c) 会使用 c 的大小作为数组容量

  4. add(Object o) 首次扩容为 10,再次扩容为上次容量的 1.5 倍

  5. addAll(Collection c) 没有元素时,扩容为 Math.max(10, 实际元素个数),有元素时为 Math.max(原容量 1.5 倍, 实际元素个数)

其中第 4 点必须知道,其它几点视个人情况而定

提示

  • 测试代码见 day01.list.TestArrayList ,这里不再列出
  • 注意的是,示例中用反射方式来更直观地反映 ArrayList 的扩容特征,但从 JDK 9 由于模块化的影响,对反射做了较多限制,需要在运行测试代码时添加 VM 参数 --add-opens java.base/java.util=ALL-UNNAMED 方能运行通过,后面的例子都有相同问题

代码说明

  • day01.list.TestArrayList#arrayListGrowRule 演示了 add(Object) 方法的扩容规则,输入参数 n 代表打印多少次扩容后的数组长度

8. Iterator

要求

  • 掌握什么是 Fail-Fast、什么是 Fail-Safe

Fail-Fast 与 Fail-Safe

  • ArrayList 是 fail-fast 的典型代表,遍历的同时不能修改,尽快失败

  • CopyOnWriteArrayList 是 fail-safe 的典型代表,遍历的同时可以修改,原理是读写分离

提示

  • 测试代码见 day01.list.FailFastVsFailSafe,这里不再列出

9. LinkedList

要求

  • 能够说清楚 LinkedList 对比 ArrayList 的区别,并重视纠正部分错误的认知

LinkedList

  1. 基于双向链表,无需连续内存
  2. 随机访问慢(要沿着链表遍历)
  3. 头尾插入删除性能高
  4. 占用内存多

ArrayList

  1. 基于数组,需要连续内存
  2. 随机访问快(指根据下标访问)
  3. 尾部插入、删除性能可以,其它部分插入、删除都会移动数据,因此性能会低
  4. 可以利用 cpu 缓存,局部性原理

代码说明

  • day01.list.ArrayListVsLinkedList#randomAccess 对比随机访问性能
  • day01.list.ArrayListVsLinkedList#addMiddle 对比向中间插入性能
  • day01.list.ArrayListVsLinkedList#addFirst 对比头部插入性能
  • day01.list.ArrayListVsLinkedList#addLast 对比尾部插入性能
  • day01.list.ArrayListVsLinkedList#linkedListSize 打印一个 LinkedList 占用内存
  • day01.list.ArrayListVsLinkedList#arrayListSize 打印一个 ArrayList 占用内存

10. HashMap

要求

  • 掌握 HashMap 的基本数据结构
  • 掌握树化
  • 理解索引计算方法、二次 hash 的意义、容量对索引计算的影响
  • 掌握 put 流程、扩容、扩容因子
  • 理解并发使用 HashMap 可能导致的问题
  • 理解 key 的设计

1)基本数据结构

  • 1.7 数组 + 链表
  • 1.8 数组 + (链表 | 红黑树)

更形象的演示,见资料中的 hash-demo.jar,运行需要 jdk14 以上环境,进入 jar 包目录,执行下面命令

java -jar --add-exports java.base/jdk.internal.misc=ALL-UNNAMED hash-demo.jar

2)树化与退化

[Java Util Logging]

树化意义

  • 红黑树用来避免 DoS ,防止链表超长时性能下降,树化应当是偶然情况,是保底策略
  • hash 表的查找,更新的时间复杂度是 ,而红黑树的查找,更新的时间复杂度是 ,TreeNode 占用空间也比普通 Node 的大,如非必要,尽量还是使用链表
  • hash 值如果足够随机,则在 hash 表内按泊松分布,在负载因子 0.75 的情况下,长度超过 8 的链表出现概率是 0.00000006,树化阈值选择 8 就是为了让树化几率足够小

树化规则

  • 当链表长度超过树化阈值 8 时,先尝试扩容来减少链表长度,如果数组容量已经 >=64,才会进行树化

退化规则

  • 情况1:在扩容时如果拆分树时,树元素个数 <= 6 则会退化链表
  • 情况2:remove 树节点时,若 root、root.left、root.right、root.left.left 有一个为 null ,也会退化为链表

3)索引计算

索引计算方法

[JDK 21 API 文档]

  • 首先,计算对象的 hashCode()
  • 再进行调用 HashMap 的 hash() 方法进行二次哈希
  • 二次 hash() 是为了综合高位数据,让哈希分布更为均匀
  • 最后 & (capacity – 1) 得到索引

数组容量为何是 2 的 n 次幂

  1. 计算索引时效率更高:如果是 2 的 n 次幂可以使用位与运算代替取模
  2. 扩容时重新计算索引效率更高: hash & oldCap == 0 的元素留在原来位置 ,否则新位置 = 旧位置 + oldCap

注意

[SpringDoc OpenAPI]

  • 二次 hash 是为了配合 容量是 2 的 n 次幂 这一设计前提,如果 hash 表的容量不是 2 的 n 次幂,则不必二次 hash
  • 容量是 2 的 n 次幂 这一设计计算索引效率更好,但 hash 的分散性就不好,需要二次 hash 来作为补偿,没有采用这一设计的典型例子是 Hashtable

4)put 与扩容

put 流程

  1. HashMap 是懒惰创建数组的,首次使用才创建数组
  2. 计算索引(桶下标)
  3. 如果桶下标还没人占用,创建 Node 占位返回
  4. 如果桶下标已经有人占用
  5. 已经是 TreeNode 走红黑树的添加或更新逻辑
  6. 是普通 Node,走链表的添加或更新逻辑,如果链表长度超过树化阈值,走树化逻辑
  7. 返回前检查容量是否超过阈值,一旦超过进行扩容

1.7 与 1.8 的区别

  1. 链表插入节点时,1.7 是头插法,1.8 是尾插法

  2. 1.7 是大于等于阈值且没有空位时才扩容,而 1.8 是大于阈值就扩容

  3. 1.8 在扩容计算 Node 索引时,会优化

扩容(加载)因子为何默认是 0.75f

  1. 在空间占用与查询时间之间取得较好的权衡
  2. 大于这个值,空间节省了,但链表就会比较长影响性能
  3. 小于这个值,冲突减少了,但扩容就会更频繁,空间占用也更多

5)并发问题

扩容死链(1.7 会存在)

1.7 源码如下:

[JSON-B API]

void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
        while(null != e) {
            Entry<K,V> next = e.next;
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            int i = indexFor(e.hash, newCapacity);
            e.next = newTable[i];
            newTable[i] = e;
            e = next;
        }
    }
}
  • e 和 next 都是局部变量,用来指向当前节点和下一个节点
  • 线程1(绿色)的临时变量 e 和 next 刚引用了这俩节点,还未来得及移动节点,发生了线程切换,由线程2(蓝色)完成扩容和迁移

  • 线程2 扩容完成,由于头插法,链表顺序颠倒。但线程1 的临时变量 e 和 next 还引用了这俩节点,还要再来一遍迁移

  • 第一次循环
  • 循环接着线程切换前运行,注意此时 e 指向的是节点 a,next 指向的是节点 b
  • e 头插 a 节点,注意图中画了两份 a 节点,但事实上只有一个(为了不让箭头特别乱画了两份)
  • 当循环结束是 e 会指向 next 也就是 b 节点

  • 第二次循环
  • next 指向了节点 a

[Eclipse IDE 文档]

  • e 头插节点 b
  • 当循环结束时,e 指向 next 也就是节点 a

  • 第三次循环
  • next 指向了 null
  • e 头插节点 a,a 的 next 指向了 b(之前 a.next 一直是 null),b 的 next 指向 a,死链已成
  • 当循环结束时,e 指向 next 也就是 null,因此第四次循环时会正常退出

数据错乱(1.7,1.8 都会存在)

  • 代码参考 day01.map.HashMapMissData,具体调试步

11. 单例模式

要求

  • 掌握五种单例模式的实现方式
  • 理解为何 DCL 实现时要使用 volatile 修饰静态变量
  • 了解 jdk 中用到单例的场景

饿汉式

public class Singleton1 implements Serializable {
    private Singleton1() {
        if (INSTANCE != null) {
            throw new RuntimeException("单例对象不能重复创建");
        }
        System.out.println("private Singleton1()");
    }

    private static final Singleton1 INSTANCE = new Singleton1();

    public static Singleton1 getInstance() {
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }

    public Object readResolve() {
        return INSTANCE;
    }
}
  • 构造方法抛出异常是防止反射破坏单例
  • readResolve() 是防止反序列化破坏单例

枚举饿汉式

[NetBeans 文档]

public enum Singleton2 {
    INSTANCE;

    private Singleton2() {
        System.out.println("private Singleton2()");
    }

    @Override
    public String toString() {
        return getClass().getName() + "@" + Integer.toHexString(hashCode());
    }

    public static Singleton2 getInstance() {
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }
}
  • 枚举饿汉式能天然防止反射、反序列化破坏单例

懒汉式

[Caffeine 文档]

[PowerMock 文档]

public class Singleton3 implements Serializable {
    private Singleton3() {
        System.out.println("private Singleton3()");
    }

    private static Singleton3 INSTANCE = null;

    // Singleton3.class
    public static synchronized Singleton3 getInstance() {
        if (INSTANCE == null) {
            INSTANCE = new Singleton3();
        }
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }

}

*

【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。