基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真

举报
简简单单做算法 发表于 2025/06/06 15:13:01 2025/06/06
【摘要】 1.算法运行效果图预览(完整程序运行后无水印)2.算法运行软件版本matlab2022a/matlab2024b 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)X = woa_idx;%设置网络参数 %卷积核Nfilter = floor(X(1));%8; %卷积核大小Sfilter = floor(X(2));%5; %丢失因子drops = X(...

1.算法运行效果图预览

(完整程序运行后无水印)

1.jpeg

2.jpeg

3.jpeg

4.jpeg

5.jpeg

6.jpeg

2.算法运行软件版本

matlab2022a/matlab2024b

 

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

X       = woa_idx;
%设置网络参数 
%卷积核
Nfilter = floor(X(1));%8;  
%卷积核大小
Sfilter = floor(X(2));%5;     
%丢失因子
drops   = X(3);%0.025;  
%残差块
Nblocks = floor(X(4));%4;       
%特征个数
Nfeats  = Dims;      
 
%设置网络参数 
lgraph=func_layers2(Dims,Dimso,X);
%参数设置
options = trainingOptions("adam",...          
          'InitialLearnRate',X(5),...        
          'MaxEpochs',500,...               
          'miniBatchSize',2,...               
          'Plots','training-progress',...     
          'Verbose', false);
%训练
[net,INFO] = trainNetwork(Ptrain_reshape, Ttrain_reshape, lgraph, options);
 
Rerr = INFO.TrainingRMSE;
Rlos = INFO.TrainingLoss;
figure
subplot(211)
plot(Rerr)
xlabel('迭代次数')
ylabel('RMSE')
grid on
    
subplot(212)
plot(Rlos)
xlabel('迭代次数')
ylabel('LOSS')
grid on
%仿真预测
tmps   = predict(net, Ptest_reshape ); 
T_pred = double(tmps{1, 1});
%反归一化
T_pred = mapminmax('reverse', T_pred, vmax2);
ERR    = mean(abs(T_test-T_pred));
ERR
 
figure
plot(T_test, 'b','LineWidth', 1)
hold on
plot(T_pred, 'r','LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on
 
figure
plotregression(T_test,T_pred,['回归']);
 
save R2.mat Rerr Rlos T_test T_pred ERR 
203

 

4.算法理论概述

        TCN 是一种专门为处理时间序列数据设计的卷积神经网络。它以卷积层为核心组件,通过扩张卷积(Dilated Convolution)来增加感受野,从而捕捉时间序列中的长距离依赖关系。与传统的循环神经网络(如 RNNLSTM)不同,TCN 的卷积操作可以并行计算,大大提高了训练效率。在 TCN 中,输入的时间序列数据依次经过多个卷积层、批归一化层(Batch Normalization)和激活函数层(如 ReLU)进行特征提取和转换。这些层的组合能够自动学习时间序列中的复杂模式和趋势。

 

       经过多层卷积和处理后,TCN 的输出层将生成预测结果。对于时间序列预测任务,输出层的维度通常与预测的时间步长相对应。

7.jpg

算法流程

 

        WOAWhale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。

 

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

 

2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。

 

3.计算适应度值:对于每个个体,将其对应的网络参数代入TCN网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该个体的适应度值。

 

4.更新个体信息。

 

5.重复步骤 3 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。

 

6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入TCN网络中,对测试数据进行预测,得到最终的预测结果。

 

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。