RK3588 AI 应用开发 (YOLOX-目标检测)【玩转华为云】
【摘要】 本章介绍了基于RK3588平台使用YOLOX进行目标检测的全流程,包括模型训练与转换、Gradio界面开发、推理代码编写、图像和视频预测实现,以及Flask服务部署。整体实现了高效的鱼类检测应用,适用于嵌入式设备部署与实际场景应用。
RK3588 AI 应用开发 (YOLOX-目标检测)
一、模型训练和转换
YOLOX是YOLO系列的优化版本,引入了解耦头、数据增强、无锚点以及标签分类等目标检测领域的优秀进展,拥有较好的精度表现,同时对工程部署友好。
模型的训练与转换教程已经开放在AI Gallery中,其中包含训练数据、训练代码、模型转换脚本。
在ModelArts的Notebook环境中训练后,再转换成对应平台的模型格式:onnx格式可以用在Windows设备上,RK系列设备上需要转换为rknn格式。
二、应用开发
1. 开发 Gradio 界面
import cv2
import json
import base64
import requests
import numpy as np
import gradio as gr
def test_image(image_path):
try:
image_bgr = cv2.imread(image_path)
image_string = cv2.imencode('.jpg', image_bgr)[1].tobytes()
image_base64 = base64.b64encode(image_string).decode('utf-8')
params = {"image_base64": image_base64}
response = requests.post(f'http://{ip}:{port}{url}', data=json.dumps(params),
headers={"Content-Type": "application/json"})
if response.status_code == 200:
image_base64 = response.json().get("image_base64")
image_binary = base64.b64decode(image_base64)
image_array = np.frombuffer(image_binary, dtype=np.uint8)
image_rgb = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
else:
image_rgb = None
except Exception as e:
return None
else:
return image_rgb
if __name__ == "__main__":
port = 8000
ip = "127.0.0.1"
url = "/v1/fish_det"
demo = gr.Interface(fn=test_image, inputs=gr.Image(type="filepath"), outputs=["image"], title="YOLOX 深海鱼类检测")
demo.launch(share=False, server_port=3000)
* Running on local URL: http://127.0.0.1:3000
* To create a public link, set `share=True` in `launch()`.
2. 编写推理代码
%%writefile YOLOX/yolox/data/datasets/voc_classes.py
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Copyright (c) Megvii, Inc. and its affiliates.
# VOC_CLASSES = ( '__background__', # always index 0
VOC_CLASSES = (
"fish",
)
Overwriting YOLOX/yolox/data/datasets/voc_classes.py
import sys
sys.path.append("YOLOX")
from yolox.utils import demo_postprocess, multiclass_nms, vis
from yolox.data.data_augment import preproc as preprocess
from yolox.data.datasets.voc_classes import VOC_CLASSES
import cv2
import numpy as np
import ipywidgets as widgets
from rknnlite.api import RKNNLite
from IPython.display import display
class YOLOX:
def __init__(self, model_path):
self.ratio = None
self.rknn_lite = RKNNLite()
self.rknn_lite.load_rknn(model_path)
self.rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)
def preprocess(self, image):
start_img, self.ratio = preprocess(image, (320, 320), swap=(0, 1, 2))
return np.expand_dims(start_img, axis=0)
def rknn_infer(self, data):
outputs = self.rknn_lite.inference(inputs=[data])
return outputs[0]
def post_process(self, pred):
predictions = demo_postprocess(pred.squeeze(), (320, 320))
boxes = predictions[:, :4]
scores = predictions[:, 4:5] * predictions[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
boxes_xyxy /= self.ratio
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.25)
return dets
def predict(self, image):
# 图像预处理
data = self.preprocess(image)
# 模型推理
pred = self.rknn_infer(data)
# 模型后处理
dets = self.post_process(pred)
# 绘制目标检测结果
if dets is not None:
final_boxes = dets[:, :4]
final_scores, final_cls_inds = dets[:, 4], dets[:, 5]
image = vis(image, final_boxes, final_scores, final_cls_inds, conf=0.25, class_names=VOC_CLASSES)
return image[..., ::-1]
def img2bytes(self, image):
"""将图片转换为字节码"""
return bytes(cv2.imencode('.jpg', image)[1])
def infer_video(self, video_path):
"""视频推理"""
image_widget = widgets.Image(format='jpeg', width=800, height=600)
display(image_widget)
cap = cv2.VideoCapture(video_path)
while True:
ret, img_frame = cap.read()
if not ret:
break
image_pred = self.predict(img_frame)
image_widget.value = self.img2bytes(image_pred)
cap.release()
def release(self):
"""释放资源"""
self.rknn_lite.release()
3. 图像预测
4. 视频推理
5. 创建 Flask 服务
import cv2
import base64
import numpy as np
from rknnlite.api import RKNNLite
from flask import Flask, request, jsonify
from flask_cors import CORS
app = Flask(__name__)
CORS(app)
@app.route('/v1/fish_det', methods=['POST'])
def inference():
data = request.get_json()
image_base64 = data.get("image_base64")
image_binary = base64.b64decode(image_base64)
image_array = np.frombuffer(image_binary, dtype=np.uint8)
image_bgr = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
image_rgb = model.predict(image_bgr)
image_string = cv2.imencode('.jpg', image_rgb)[1].tobytes()
image_base64 = base64.b64encode(image_string).decode('utf-8')
return jsonify({
"image_base64": image_base64
}), 200
if __name__ == '__main__':
model = YOLOX('model/yolox_fish.rknn')
app.run(host='0.0.0.0', port=8000)
model.release()
6. 上传图片预测
三、小结
本章介绍了基于RK3588平台使用YOLOX进行目标检测的全流程,包括模型训练与转换、Gradio界面开发、推理代码编写、图像和视频预测实现,以及Flask服务部署。整体实现了高效的鱼类检测应用,适用于嵌入式设备部署与实际场景应用。
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)