植被生长与环境因素关联性研究:北部森林数据集分析

举报
此星光明 发表于 2025/03/19 11:37:50 2025/03/19
【摘要】 ​ABoVE: Landsat Vegetation Greenness Trends, Boreal Forest Biome, 1985-2019简介这个数据集涵盖了1985年到2019年的时间范围内,在北部森林生物群系中,利用Landsat卫星测量的植被绿度趋势。数据集收集了关于植被覆盖变化的信息,可以帮助研究人员了解在这一时期内,北部森林地区植被的生长和变化情况。摘要Table 1....

ABoVE: Landsat Vegetation Greenness Trends, Boreal Forest Biome, 1985-2019

简介

这个数据集涵盖了1985年到2019年的时间范围内,在北部森林生物群系中,利用Landsat卫星测量的植被绿度趋势。数据集收集了关于植被覆盖变化的信息,可以帮助研究人员了解在这一时期内,北部森林地区植被的生长和变化情况。

摘要

Table 1. File names and descriptions.

File Name Units Description
boreal_greenness_median_percent_change_BBBB_CCCC.tif percent Median percent change in annual maximum vegetation greenness for time period across all sample locations within each ecological land unit. Percent change was computed as the change in vegetation greenness during the time period divided by initial vegetation greenness and then multiplied by 100.
boreal_greenness_percent_browning_BBBB_CCCC.tif percent Percent of sample locations in each ecological land unit that had a significant (α=0.10) negative trend in annual maximum vegetation greenness for the time period.
boreal_greenness_percent_greening_BBBB_CCCC.tif percent Percent of sample locations in each ecological land unit that had a significant (α=0.10) positive trend in annual maximum vegetation greenness for the time period.
boreal_sample_frame.tif 1 Binary raster identifying grid cells that were part of the boreal forest sampling frame.
boreal_ecounits.tif 1 Numerical identifier for each ecological land unit in the boreal sampling frame.
boreal_greenness_trend_summary.csv - Tabular data including trends in annual maximum vegetation greenness for sample locations during two time periods derived using an ensemble of spectral vegetation indices.
See Table 2 for variables and descriptions.

Data File Details

Each GeoTIFF has a spatial domain covering the circum-hemispheric distribution of the boreal forest biome between 45 to 70 degrees north at 300 m spatial resolution in the North Pole Lambert Azimuthal Equal Area (LAEA) spatial projection (EPSG:3571).

Table 2. Variables in the file boreal_greenness_trend_summary.csv. Each trend metric includes a best-estimate (50th percentile) as well as a lower bound (2.5th percentile) and upper bound (97.5th percentile) of a 95% confidence interval derived from Monte Carlo simulations.

Variable Units Description
site - Unique alphanumeric identifier for each sample location.
latitude degree_north Latitude in decimal degrees of site; WGS84 datum.
longitude degree_east Longitude in decimal degrees of site; WGS84 datum.
ecounit 1 Numerical identifier for the Ecological Land Unit in which each site is located.
trend.period - Time period over which the trend in vegetation greenness was assessed (“1985 to 2019” or “2000 to 2019").
tau.p025 1 Mann-Kendall’s tau statistic (2.5th percentile).
tau.p500 1 Mann-Kendall’s tau statistic (50th percentile).
tau.p975 1 Mann-Kendall’s tau statistic (97.5th percentile).
percent.change.p025 percent Percent change in vegetation greenness (2.5th percentile).
percent.change.p500 percent Percent change in vegetation greenness (50th percentile).
percent.change.p975 percent Percent change in vegetation greenness (97.5th percentile).


代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
results, gdf = leafmap.nasa_data_search(
    short_name="ABoVE_ASCENDS_XCO2_2050",
    cloud_hosted=True,
    bounding_box=(-180.0, 45.0, 180.0, 72.0),
    temporal=("1985-01-01", "2019-12-31"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Berner, L.T., and S.J. Goetz. 2022. ABoVE: Landsat Vegetation Greenness Trends, Boreal Forest Biome, 1985-2019. ORNL DAAC, Oak Ridge, Tennessee, USA. 


【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。