城市生态系统中生物源碳动态:2010-2019年GPP、Reco和NEE数据集分析

举报
此星光明 发表于 2025/03/16 14:32:50 2025/03/16
【摘要】 ​Urban Biogenic CO2 fluxes: GPP, Reco and NEE Estimates from SMUrF, 2010-2019简介这个数据集记录了2010年至2019年期间,城市中生物源碳排放的GPP(总初级生产力)、Reco(总呼吸作用)以及NEE(净生态交换)的估算值。这些数据来自SMUrF项目,可以帮助研究人员了解城市生态系统中碳的动态变化情况。摘要Comm...

Urban Biogenic CO2 fluxes: GPP, Reco and NEE Estimates from SMUrF, 2010-2019

简介

这个数据集记录了2010年至2019年期间,城市中生物源碳排放的GPP(总初级生产力)、Reco(总呼吸作用)以及NEE(净生态交换)的估算值。这些数据来自SMUrF项目,可以帮助研究人员了解城市生态系统中碳的动态变化情况。


摘要

Common Core

Table 1. File names and descriptions. <yyyy> and <yyyymm> represent the year and year and month of the data file, respectively. See Table 2 for a description of each <region>.

File Name Description
fourday_mean_SIF_GPP_uncert_<region>_<yyyy>.nc4 (e.g., fourday_mean_SIF_GPP_uncert_easternChina_2018.nc4) 4-day mean SIF and GPP uncertainties for each region, for each available year

daily_mean_Reco_uncert_<region>_<yyyymm>.nc4
(e.g., daily_mean_Reco_uncert_centralAfrica_201701.nc4)

Daily mean Reco uncertainties for each region, for each month of each available year
hrly_mean_GPP_Reco_NEE_<region>_<yyyymm>.nc4
(e.g., hrly_mean_GPP_Reco_NEE_westernCONUS_201602.nc4)
Hourly mean GPP, Reco, and NEE for each region, for each month for each available year

Data File Details

The no-data value is -999.

Table 2. Years of data available for each region.

Region Year
central Africa, eastern Asia, eastern Australia, eastern China, and South America 2017, 2018
eastern CONUS, western CONUS 2010–2019
western Europe 2010–2014, 2017, 2018

Table 3. Variables included in all data files.

Variables Dimension and Unit Description
lon degree_east Longitude at cell center
lat degree_north Latitude at cell center
time seconds since 1970-01-01 00:00:00Z UTC time

Table 4. Variables in files named fourday_mean_SIF_GPP_uncert_<region>_<yyyy>.nc4.

Variable Units/format Description
SIF_mean mW m−2 nm−1 sr−1 4-day mean clear-sky CSIF from Zhang et al. (2018)
GPP_mean µmol m-2 s-1 4-day mean Gross Primary Production (best estimates) based on clear-sky CSIF and GPP- SIF slopes aggregated from 500 m
GPP_sd µmol m-2 s-1 1-sigma uncertainty of the 4-day mean Gross Primary Productions (based on model-FLUXNET comparisons)

 Table 5. Variables in files named daily_mean_Reco_uncert_<region>_<yyyymm>.nc4.

Variable Units/format Description
Reco_mean µmol m-2 s-1 Daily mean Ecosystem Respiration (best estimates) based on pretrained biome-specific neural network models and ERA5-based temperature fields
Reco_sd µmol m-2 s-1 1-sigma uncertainty of Daily Mean Ecosystem Respiration (based on model-FLUXNET comparisons)

Table 6. Variables in files named hrly_mean_GPP_Reco_NEE_<region>_<yyyymm>.nc4.

Variable Units/format Description
GPP_mean µmol m-2 s-1 Hourly mean Gross Primary Production (best estimates) using hourly downscaling factors based on hourly fields of surface solar radiation downwards from ERA5 reanalysis
Reco_mean µmol m-2 s-1 Hourly mean Ecosystem Respiration (best estimates) using hourly downscaling factors based on hourly air temperature fields from ERA5 reanalysis
NEE_mean µmol m-2 s-1 Hourly mean Net Ecosystem Exchanges (best estimates) based on hourly GPP and Reco

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="Biogenic_CO2flux_SIF_SMUrF_1899",
    cloud_hosted=True,
    bounding_box=(-125.0, -40.0, 155.0, 60.0),
    temporal=("2010-01-01", "2019-12-31"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")


引用

Wu, D., and J.C. Lin. 2021. Urban Biogenic CO2 fluxes: GPP, Reco and NEE Estimates from SMUrF, 2010-2019. ORNL DAAC, Oak Ridge, Tennessee, USA.



【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。