InceptionV3-图像分类【玩转华为云】
InceptionV3-图像分类
一、模型训练与转换
Inception V3,GoogLeNet的改进版本,采用InceptionModule和全局平均池化层,v3一个最重要的改进是分解(Factorization),将7x7分解成两个一维的卷积(1x7,7x1),3x3也是一样(1x3,3x1),这样的好处,既可以加速计算(多余的计算能力可以用来加深网络),又可以将1个conv拆成2个conv,使得网络深度进一步增加,增加了网络的非线性。
模型的训练与转换教程已经开放在AI Gallery中,其中包含训练数据、训练代码、模型转换脚本。
在ModelArts的Notebook环境中训练后,再转换成对应平台的模型格式:onnx格式可以用在Windows设备上,RK系列设备上需要转换为rknn格式。
二、ModelBox 应用开发
1. 创建工程
在ModelBox sdk
目录下使用create.bat
创建InceptionV3
工程:
PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t server -n InceptionV3
...
success: create InceptionV3 in D:\modelbox-win10-x64-1.5.3\workspace
create.bat
工具的参数中,-t
参数,表示所创建实例的类型,包括server
(ModelBox工程)、python
(Python功能单元)、c++
(C++功能单元)、infer
(推理功能单元)等;-n
参数,表示所创建实例的名称;-s
参数,表示将使用后面参数值代表的模板创建工程,而不是创建空的工程。
2. 创建推理功能单元
在ModelBox sdk
目录下使用create.bat
创建inceptionv3_infer
推理功能单元:
PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t infer -n inceptionv3_infer -p InceptionV3
...
success: create infer inceptionv3_infer in D:\modelbox-win10-x64-1.5.3\workspace\InceptionV3/model/inceptionv3_infer
create.bat
工具使用时,-t infer
即表示创建的是推理功能单元;-n xxx_infer
表示创建的功能单元名称为xxx_infer;-p
表示所创建的功能单元属于InceptionV3
应用。
下载转换好的InceptionV3.onnx模型到InceptionV3\model
目录下,修改推理功能单元inceptionv3_infer.toml
模型的配置文件:
# Copyright (C) 2020 Huawei Technologies Co., Ltd. All rights reserved.
[base]
name = "inceptionv3_infer"
device = "cpu"
version = "1.0.0"
description = "your description"
entry = "./InceptionV3.onnx" # model file path, use relative path
type = "inference"
virtual_type = "onnx" # inference engine type: win10 now only support onnx
group_type = "Inference" # flowunit group attribution, do not change
# Input ports description
[input]
[input.input1] # input port number, Format is input.input[N]
name = "Input" # input port name
type = "float" # input port data type ,e.g. float or uint8
device = "cpu" # input buffer type: cpu, win10 now copy input from cpu
# Output ports description
[output]
[output.output1] # output port number, Format is output.output[N]
name = "Output" # output port name
type = "float" # output port data type ,e.g. float or uint8
3. 创建后处理功能单元
在ModelBox sdk
目录下使用create.bat
创建inceptionv3_post
后处理功能单元:
PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t python -n inceptionv3_post -p InceptionV3
...
success: create python inceptionv3_post in D:\modelbox-win10-x64-1.5.3\workspace\InceptionV3/etc/flowunit/inceptionv3_post
create.bat
工具使用时,-t python
即表示创建的是通用功能单元;-n xxx_post
表示创建的功能单元名称为xxx_post;-p
表示所创建的功能单元属于InceptionV3
应用。
a. 修改配置文件
我们的模型有一个输入和输出,总共包含90种动物类别:
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
# Basic config
[base]
name = "inceptionv3_post" # The FlowUnit name
device = "cpu" # The flowunit runs on cpu
version = "1.0.0" # The version of the flowunit
type = "python" # Fixed value, do not change
description = "description" # The description of the flowunit
entry = "inceptionv3_post@inceptionv3_postFlowUnit" # Python flowunit entry function
group_type = "Generic" # flowunit group attribution, change as Input/Output/Image/Generic ...
# Flowunit Type
stream = false # Whether the flowunit is a stream flowunit
condition = false # Whether the flowunit is a condition flowunit
collapse = false # Whether the flowunit is a collapse flowunit
collapse_all = false # Whether the flowunit will collapse all the data
expand = false # Whether the flowunit is a expand flowunit
# The default Flowunit config
[config]
num_classes = 90
# Input ports description
[input]
[input.input1] # Input port number, the format is input.input[N]
name = "in_feat" # Input port name
type = "float" # Input port type
# Output ports description
[output]
[output.output1] # Output port number, the format is output.output[N]
name = "out_data" # Output port name
type = "string" # Output port type
b. 修改逻辑代码
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import _flowunit as modelbox
import numpy as np
import json
class inceptionv3_postFlowUnit(modelbox.FlowUnit):
# Derived from modelbox.FlowUnit
def __init__(self):
super().__init__()
def open(self, config):
# Open the flowunit to obtain configuration information
self.params = {}
self.params['num_classes'] = config.get_int('num_classes')
return modelbox.Status.StatusCode.STATUS_SUCCESS
def process(self, data_context):
# Process the data
in_feat = data_context.input("in_feat")
out_data = data_context.output("out_data")
# inceptionv3_post process code.
# Remove the following code and add your own code here.
for buffer_feat in in_feat:
feat_data = np.array(buffer_feat.as_object(), copy=False)
clsse = np.argmax(feat_data).astype(np.int32).item()
score = feat_data[clsse].astype(np.float32).item()
result = {"clsse": clsse, "score":score}
result_str = json.dumps(result)
out_buffer = modelbox.Buffer(self.get_bind_device(), result_str)
out_data.push_back(out_buffer)
return modelbox.Status.StatusCode.STATUS_SUCCESS
def close(self):
# Close the flowunit
return modelbox.Status()
def data_pre(self, data_context):
# Before streaming data starts
return modelbox.Status()
def data_post(self, data_context):
# After streaming data ends
return modelbox.Status()
def data_group_pre(self, data_context):
# Before all streaming data starts
return modelbox.Status()
def data_group_post(self, data_context):
# After all streaming data ends
return modelbox.Status()
4. 修改应用的流程图
InceptionV3
工程graph
目录下存放流程图,默认的流程图InceptionV3.toml
与工程同名:
# Copyright (C) 2020 Huawei Technologies Co., Ltd. All rights reserved.
[driver]
dir = ["${HILENS_APP_ROOT}/etc/flowunit",
"${HILENS_APP_ROOT}/etc/flowunit/cpp",
"${HILENS_APP_ROOT}/model",
"${HILENS_MB_SDK_PATH}/flowunit"]
skip-default = true
[profile]
profile=false
trace=false
dir="${HILENS_DATA_DIR}/mb_profile"
[graph]
format = "graphviz"
graphconf = """digraph InceptionV3 {
node [shape=Mrecord]
queue_size = 4
batch_size = 1
input1[type=input,flowunit=input,device=cpu,deviceid=0]
httpserver_sync_receive[type=flowunit, flowunit=httpserver_sync_receive_v2, device=cpu, deviceid=0, time_out_ms=5000, endpoint="http://0.0.0.0:1234/v1/InceptionV3", max_requests=100]
image_decoder[type=flowunit, flowunit=image_decoder, device=cpu, key="image_base64", queue_size=4]
image_resize[type=flowunit, flowunit=resize, device=cpu, deviceid=0, image_width=224, image_height=224]
normalize[type=flowunit, flowunit=normalize, device=cpu, deviceid=0, standard_deviation_inverse="0.003921568627450,0.003921568627450,0.003921568627450"]
inceptionv3_infer[type=flowunit, flowunit=inceptionv3_infer, device=cpu, deviceid=0, batch_size=1]
inceptionv3_post[type=flowunit, flowunit=inceptionv3_post, device=cpu, deviceid=0]
httpserver_sync_reply[type=flowunit, flowunit=httpserver_sync_reply_v2, device=cpu, deviceid=0]
input1:input -> httpserver_sync_receive:in_url
httpserver_sync_receive:out_request_info -> image_decoder:in_encoded_image
image_decoder:out_image -> image_resize:in_image
image_resize:out_image -> normalize:in_data
normalize:out_data -> inceptionv3_infer:Input
inceptionv3_infer:Output -> inceptionv3_post:in_feat
inceptionv3_post:out_data -> httpserver_sync_reply:in_reply_info
}"""
[flow]
desc = "InceptionV3 run in modelbox-win10-x64"
在命令行中运行.\create.bat -t editor
即可打开ModelBox图编排界面,可以实时修改并查看项目的流程图:
PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t editor
5. 运行应用
在InceptionV3
工程目录下执行.\bin\main.bat
运行应用:
PS D:\modelbox-win10-x64-1.5.3> cd D:\modelbox-win10-x64-1.5.3\workspace\InceptionV3
PS D:\modelbox-win10-x64-1.5.3\workspace\InceptionV3> .\bin\main.bat
在InceptionV3
工程data
目录下新建test_http.py
测试脚本:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
import os
import cv2
import json
import base64
import http.client
class HttpConfig:
'''http调用的参数配置'''
def __init__(self, host_ip, port, url, img_base64_str):
self.hostIP = host_ip
self.Port = port
self.httpMethod = "POST"
self.requstURL = url
self.headerdata = {
"Content-Type": "application/json"
}
self.test_data = {
"image_base64": img_base64_str
}
self.body = json.dumps(self.test_data)
def read_image(img_path):
'''读取图片数据并转为base64编码的字符串'''
img_data = cv2.imread(img_path)
img_data = cv2.cvtColor(img_data, cv2.COLOR_BGR2RGB)
img_str = cv2.imencode('.jpg', img_data)[1].tobytes()
img_bin = base64.b64encode(img_str)
img_base64_str = str(img_bin, encoding='utf8')
return img_data, img_base64_str
def decode_result_str(result_str):
try:
result = json.loads(result_str)
except Exception as ex:
print(str(ex))
return []
else:
return result
labels = ['antelope', 'badger', 'bat', 'bear', 'bee', 'beetle', 'bison',
'boar', 'butterfly', 'cat', 'caterpillar', 'chimpanzee',
'cockroach', 'cow', 'coyote', 'crab', 'crow', 'deer', 'dog',
'dolphin', 'donkey', 'dragonfly', 'duck', 'eagle', 'elephant',
'flamingo', 'fly', 'fox', 'goat', 'goldfish', 'goose', 'gorilla',
'grasshopper', 'hamster', 'hare', 'hedgehog', 'hippopotamus',
'hornbill', 'horse', 'hummingbird', 'hyena', 'jellyfish',
'kangaroo', 'koala', 'ladybugs', 'leopard', 'lion', 'lizard',
'lobster', 'mosquito', 'moth', 'mouse', 'octopus', 'okapi',
'orangutan', 'otter', 'owl', 'ox', 'oyster', 'panda', 'parrot',
'pelecaniformes', 'penguin', 'pig', 'pigeon', 'porcupine',
'possum', 'raccoon', 'rat', 'reindeer', 'rhinoceros', 'sandpiper',
'seahorse', 'seal', 'shark', 'sheep', 'snake', 'sparrow', 'squid',
'squirrel', 'starfish', 'swan', 'tiger', 'turkey', 'turtle',
'whale', 'wolf', 'wombat', 'woodpecker', 'zebra']
def test_image(img_path, ip, port, url):
'''单张图片测试'''
img_data, img_base64_str = read_image(img_path)
http_config = HttpConfig(ip, port, url, img_base64_str)
conn = http.client.HTTPConnection(host=http_config.hostIP, port=http_config.Port)
conn.request(method=http_config.httpMethod, url=http_config.requstURL,
body=http_config.body, headers=http_config.headerdata)
response = conn.getresponse().read().decode()
print('response: ', response)
result = decode_result_str(response)
clsse, score = result["clsse"], result["score"]
result_str = f"{labels[clsse]}:{round(score, 2)}"
cv2.putText(img_data, result_str, (0, 100), cv2.FONT_HERSHEY_TRIPLEX, 4, (0, 255, 0), 2)
cv2.imwrite('./result-' + os.path.basename(img_path), img_data[..., ::-1])
if __name__ == "__main__":
port = 1234
ip = "127.0.0.1"
url = "/v1/InceptionV3"
img_folder = './test_imgs'
file_list = os.listdir(img_folder)
for img_file in file_list:
print("\n================ {} ================".format(img_file))
img_path = os.path.join(img_folder, img_file)
test_image(img_path, ip, port, url)
在InceptionV3
工程data
目录下新建test_imgs
文件夹存放测试图片:
在另一个终端中进入InceptionV3
工程目录data
文件夹下运行test_http.py
脚本发起HTTP请求测试:
PS D:\modelbox-win10-x64-1.5.3> cd D:\modelbox-win10-x64-1.5.3\workspace\InceptionV3\data
PS D:\modelbox-win10-x64-1.5.3\workspace\InceptionV3\data> D:\modelbox-win10-x64-1.5.3\python-embed\python.exe .\test_http.py
================ 61cf5127ce.jpg ================
response: {"clsse": 63, "score": 0.9996486902236938}
================ 7e2a453559.jpg ================
response: {"clsse": 81, "score": 0.999880313873291}
在InceptionV3
工程data
目录下即可查看测试图片的推理结果:
三、小结
本节介绍了如何使用ModelArts和ModelBox训练开发一个InceptionV3动物图片分类的AI应用,我们只需要准备模型文件以及简单的配置即可创建一个HTTP服务。同时我们可以了解到InceptionV3网络的基本结构、数据处理和模型训练方法,以及对应推理应用的逻辑。
- 点赞
- 收藏
- 关注作者
评论(0)