基于遗传优化SVM的电机参数预测matlab仿真

举报
简简单单做算法 发表于 2025/03/06 23:41:16 2025/03/06
40 0 0
【摘要】 1.算法运行效果图预览(完整程序运行后无水印) 输入:电机结构参数x1 x2 x3 x4 x5(分别是铁心高度 铁心厚度 绕组匝数 窗口宽度 导线截面积 )目标值:体积v、加速度ax、加速度ay和加速度az2.算法运行软件版本matlab2022a 3.部分核心程序(完整版代码包含详细中文注释和操作步骤视频)for it=1:Iteration it %交叉 popc = ...

1.算法运行效果图预览

(完整程序运行后无水印)

 

输入:电机结构参数x1 x2 x3 x4 x5(分别是铁心高度 铁心厚度 绕组匝数 窗口宽度 导线截面积 )

目标值:体积v、加速度ax、加速度ay和加速度az

1.jpeg

2.jpeg

3.jpeg

4.jpeg

5.jpeg

6.jpeg

7.jpeg

8.jpeg

2.算法运行软件版本

matlab2022a

 

3.部分核心程序

(完整版代码包含详细中文注释和操作步骤视频)

for it=1:Iteration
    it
    %交叉
    popc = repmat(Singles,nCross/2,2);
    for k=1:nCross/2
        i1                                      = func_Binary(pop);
        i2                                      = func_Binary(pop);
        [popc(k,1).Position popc(k,2).Position] = func_Cross(pop(i1).Position,pop(i2).Position,XRange);
        popc(k,1).Cost                          = objectives(popc(k,1).Position);
        popc(k,2).Cost                          = objectives(popc(k,2).Position);
    end
    popc = popc(:);
    %变异
    popm = repmat(Singles,nMut,1);
    for k=1:nMut
        i                = func_Binary(pop);
        popm(k).Position = func_Mutate(pop(i).Position,mu,XRange);
        popm(k).Cost     = objectives(popm(k).Position);
    end
    pop     = [pop;popc;popm];
    [pop,F] = func_Sorting(pop);
    pop     = func_Distance(pop,F);
    pop     = func_Sort2(pop);
    pop     = pop(1:Nums);
    [pop,F] = func_Sorting(pop);
    pop     = func_Distance(pop,F);
    PF      = pop(F{1});
 
    PFCosts = [PF.Cost];
    Y1      = mean(PFCosts(1,:));
    Y2      = mean(PFCosts(2,:)); 
    Y3      = mean(PFCosts(3,:));
    Y4      = mean(PFCosts(4,:));
    
    PFv     = PF.Position ;
 
    ERR1(it)=[Y1(1,1)];
    ERR2(it)=[Y2(1,1)];
    ERR3(it)=[Y3(1,1)];
    ERR4(it)=[Y4(1,1)];
end
 
figure;
plot(ERR1,'b-o');
xlabel('优化迭代次数');
ylabel('体积v优化过程');
 
figure;
plot(ERR2,'r-s');
xlabel('优化迭代次数');
ylabel('加速度ax优化过程');
 
figure;
plot(ERR3,'m-*');
xlabel('优化迭代次数');
ylabel('加速度ay优化过程');
 
figure;
plot(ERR4,'k->');
xlabel('优化迭代次数');
ylabel('加速度az优化过程');
%输出最优值的时候五个x的变量结果

4.算法理论概述

      电机作为电能与机械能转换的核心设备,其性能参数与结构参数之间存在着复杂的非线性关系。在电机设计过程中,准确预测电机的性能参数(如体积、加速度等)对于优化电机结构、提高电机效率和可靠性具有极为重要的意义。传统的电机参数计算方法往往基于经验公式和简化模型,难以处理复杂的非线性关系,且计算精度有限。基于遗传优化支持向量机的电机参数预测方法利用机器学习的强大能力,从大量的样本数据中自动学习结构参数与性能参数之间的映射关系,并且通过遗传算法优化支持向量机的参数,进一步提高预测的准确性和泛化能力。

 

4.1 数据收集与预处理

       收集大量的电机样本数据,包括铁心高度、铁心厚度、绕组匝数、窗口宽度、导线截面积等结构参数以及对应的体积V 、加速度az、加速度ay和加速度az等目标值。

       对数据进行预处理,包括数据清洗(去除异常值和错误数据)、归一化处理等。归一化处理可以采用线性归一化或标准化方法,将输入和输出数据映射到特定的区间或使其具有零均值和单位方差,以提高模型的训练效率和稳定性。

 

4.2模型构建与训练

        使用遗传算法优化得到的参数Coptropt构建支持向量机模型。根据电机参数预测任务的特点,选择合适的支持向量机类型(线性或非线性)和核函数。

 

        将预处理后的训练数据输入到支持向量机模型中进行训练。训练过程就是求解支持向量机的优化问题,得到模型的参数wb(对于线性情况)或确定核函数相关的参数。

 

在训练过程中,可以采用一些优化算法加速求解过程,如序列最小优化(SMO)算法等。

 

整个算法输入:电机结构参数铁心高度 铁心厚度 绕组匝数 窗口宽度 导线截面积

 

优化的目标值:体积v、加速度ax、加速度ay和加速度az

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

作者其他文章

评论(0

抱歉,系统识别当前为高风险访问,暂不支持该操作

    全部回复

    上滑加载中

    设置昵称

    在此一键设置昵称,即可参与社区互动!

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

    *长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。