基于PSO-BP粒子群优化神经网络+NSGAII多目标优化算法的工艺参数优化、工程设计优化!
【摘要】 PSO-BP粒子群优化神经网络+NSGAII多目标优化算法,工艺参数优化、工程设计优化
1.PSO-BP粒子群优化神经网络+NSGAII多目标优化算法,工艺参数优化、工程设计优化!(Matlab完整源码和数据)
在构建PSO-BP神经网络模型时,首先需要设计神经网络的结构,包括输入层、隐藏层和输出层的节点数。输入层节点数通常由输入数据的维度决定,输出层节点数由待解决的问题类型决定。隐藏层节点数的选择则较为复杂,需要通过实验和调整来确定最佳值。
确定网络结构后,利用PSO算法对神经网络的权重和偏置进行优化。具体来说,将神经网络的所有权重和偏置编码为一个粒子,粒子的维度等于网络中权重和偏置的总数。每个粒子代表一个潜在的神经网络配置,其适应度值通过神经网络的预测误差来评估。
多目标优化是指在优化问题中同时考虑多个目标的优化过程。在多目标优化中,通常存在多个冲突的目标,即改善一个目标可能会导致另一个目标的恶化。因此,多目标优化的目标是找到一组解,这组解在多个目标下都是最优的,而不是仅仅优化单一目标。
2.先通过PSO-BP封装因变量(y1 y2 y3 y4)与自变量(x1 x2 x3 x4 x5)代理模型,再通过nsga2寻找y极值(y1极大;y2 y3 y4极小),并给出对应的x1 x2 x3 x4 x5Pareto解集。
3.data为数据集,5个输入特征,4个输出变量,NSGAII算法寻极值,求出极值时(max y1; min y2;min y3;min y4)的自变量x1,x2,x3,x4,x5。
4.main1.m为PSO-BP神经网络主程序文件、main2.m为NSGAII多目标优化算法主程序文件,依次运行即可,其余为函数文件,无需运行。
5.命令窗口输出R2、MAE、MBE、MAPE、RMSE等评价指标,输出预测对比图、误差分析图、多目标优化算法求解Pareto解集图,可在下载区获取数据和程序内容。
6.适合工艺参数优化、工程设计优化等最优特征组合领域。
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
作者其他文章
评论(0)