基于SVPWM的飞轮控制系统的simulink建模与仿真

举报
yd_293572134 发表于 2024/12/31 00:16:33 2024/12/31
【摘要】 1.课题概述       基于SVPWM的飞轮控制系统的simulink建模与仿真。SVPWM的核心思想是将逆变器输出的三相电压矢量在两相静止坐标系(αβ坐标系)中表示,通过控制这些电压矢量的合成效果,精确地追踪期望的圆形电压空间矢量轨迹,以实现对交流电机的高效控制。SVPWM相比传统的脉宽调制(PWM),能更充分利用直流母线电压,提高输出电压的谐波质量,进而提高电机的转矩密度和效率。 2....

1.课题概述

       基于SVPWM的飞轮控制系统的simulink建模与仿真。SVPWM的核心思想是将逆变器输出的三相电压矢量在两相静止坐标系(αβ坐标系)中表示,通过控制这些电压矢量的合成效果,精确地追踪期望的圆形电压空间矢量轨迹,以实现对交流电机的高效控制。SVPWM相比传统的脉宽调制(PWM),能更充分利用直流母线电压,提高输出电压的谐波质量,进而提高电机的转矩密度和效率。

 

2.系统仿真结果

1.jpeg

2.jpeg

3.jpeg

4.jpeg

5.jpeg

3.核心程序与模型

版本:MATLAB2022a

 

6.jpeg

 

4.系统原理简介

       SVPWM的核心思想是将逆变器输出的三相电压矢量在两相静止坐标系(αβ坐标系)中表示,通过控制这些电压矢量的合成效果,精确地追踪期望的圆形电压空间矢量轨迹,以实现对交流电机的高效控制。SVPWM相比传统的脉宽调制(PWM),能更充分利用直流母线电压,提高输出电压的谐波质量,进而提高电机的转矩密度和效率。

7.png

8.png

        SVPWM在飞轮控制系统中的应用,不仅提高了能量转换效率,减少了谐波含量,而且使得电机运行更加平稳,控制精度更高。这对于维持飞轮的高速稳定旋转、快速响应负载变化至关重要。此外,SVPWM的灵活性也允许系统根据储能需求动态调整,实现最优的能量管理和调度,是提高飞轮储能系统整体性能的关键技术之一。

 

 

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。