【MADRL】反事实多智能体策略梯度(COMA)算法

举报
不去幼儿园 发表于 2024/12/20 11:08:24 2024/12/20
【摘要】 反事实多智能体策略梯度法COMA (Counterfactual Multi-Agent Policy Gradient) 是一种面向多智能体协作问题的强化学习算法,旨在通过减少策略梯度的方差,来提升去中心化智能体的学习效果。 COMA 算法最早由 DeepMind 团队提出,论文标题为 "Counterfactual Multi-Agent Policy Gradients",由 Jakob

       本篇文章是博主强化学习RL领域学习时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在强化学习专栏:

       强化学习(9)---《【MADRL】反事实多智能体策略梯度(COMA)算法》

【MADRL】反事实多智能体策略梯度(COMA)算法

目录

0.介绍

1.算法背景和思想

2.公式推导

3.COMA 算法步骤

4.优势

5.应用场景

 [Python] COMA 算法实现


0.介绍

        反事实多智能体策略梯度法COMA (Counterfactual Multi-Agent Policy Gradient) 是一种面向多智能体协作问题的强化学习算法,旨在通过减少策略梯度的方差,来提升去中心化智能体的学习效果。

        COMA 算法最早由 DeepMind 团队提出,论文标题为 "Counterfactual Multi-Agent Policy Gradients",由 Jakob Foerster 等人于 2017 年在 AAAI 会议上发表。适用于局部观察、去中心化决策的多智能体环境,特别是策略梯度方法下的合作问题。

参考文献:Counterfactual Multi-Agent Policy Gradients


1.算法背景和思想

        在多智能体强化学习场景中,每个智能体在某一时刻只掌握局部的信息,无法全局观测环境状态。为了促进合作,各个智能体的动作对全局奖励有不同的贡献,因此需要一种有效的方法来分配奖励。COMA 引入了“反事实基线”(Counterfactual Baseline)的概念,专门用于降低多智能体策略梯度方法中的方差。

        COMA 的核心思想是通过引入一个基线,该基线模拟在固定其他智能体动作的前提下,某个智能体选择不同动作时对全局奖励的影响,从而更精确地衡量当前动作的贡献,减少策略梯度更新中的方差。

07286bd3fb604b36a2acc3ac5d29a5e5.png


2.公式推导

  1. 全局策略梯度:对于多智能体问题,每个智能体eq?%28%20i%20%29的策略梯度可以表示为:

    eq?%5B%20%5Cnabla_%7B%5Ctheta_i%7D%20J%28%5Ctheta_i%29%20%3D%20%5Cmathbb%7BE%7D%5Cleft%5B%20%5Cnabla_%7B%5Ctheta_i%7D%20%5Clog%20%5Cpi_%7B%5Ctheta_i%7D%28a_i%7Cs%29%20Q_i%28s%2C%20a%29%20%5Cright%5D%20%5D

    其中,eq?%28%20%5Cpi_%7B%5Ctheta_i%7D%28a_i%7Cs%29%20%29是智能体eq?%28%20i%20%29在状态eq?%28%20s%20%29下选择动作eq?%28%20a_i%20%29的概率,eq?%28%20Q_i%28s%2C%20a%29%20%29是该智能体在执行动作eq?%28%20a_i%20%29时的动作价值函数。

  2. 反事实基线:为了减小方差,COMA 提出了反事实基线eq?%28%20b%28s%2C%20a_%7B-i%7D%29%20%29,该基线衡量在保持其他智能体动作eq?%28%20a_%7B-i%7D%20%29不变的情况下,智能体eq?%28%20i%20%29 选择其他动作时的期望收益。具体公式为:

    eq?%5B%20b%28s%2C%20a_%7B-i%7D%29%20%3D%20%5Csum_%7Ba_i%7D%20%5Cpi_%7B%5Ctheta_i%7D%28a_i%7Cs%29%20Q_i%28s%2C%20a_i%2C%20a_%7B-i%7D%29%20%5D

    这里的eq?%28%20a_%7B-i%7D%20%29表示除智能体eq?%28%20i%20%29之外,其他智能体的动作组合。

  3. 策略更新:有了反事实基线之后,COMA 中智能体eq?%28%20i%20%29的策略更新公式变为:

    eq?%5B%20%5Cnabla_%7B%5Ctheta_i%7D%20J%28%5Ctheta_i%29%20%3D%20%5Cmathbb%7BE%7D%5Cleft%5B%20%5Cnabla_%7B%5Ctheta_i%7D%20%5Clog%20%5Cpi_%7B%5Ctheta_i%7D%28a_i%7Cs%29%20%28Q_i%28s%2C%20a%29%20-%20b%28s%2C%20a_%7B-i%7D%29%29%20%5Cright%5D%20%5D

    其中,eq?%28%20Q_i%28s%2C%20a%29%20%29是在当前状态下,所有智能体执行一组动作eq?%28%20a%20%29时的全局奖励,而eq?%28%20b%28s%2C%20a_%7B-i%7D%29%20%29是该动作的反事实基线。

  4. 全局值函数:COMA 中的值函数 eq?%28%20Q%28s%2C%20a%29%20%29和基线 eq?%28%20b%28s%2C%20a_%7B-i%7D%29%20%29都是通过集中化的学习进行优化的,虽然决策是去中心化的,但值函数和基线都依赖于全局的状态和动作信息。


3.COMA 算法步骤

  1. 初始化智能体策略和集中式的全局值函数。
  2. 智能体与环境交互,收集经验数据。
  3. 使用经验数据更新全局值函数 eq?%28%20Q%28s%2C%20a%29%20%29
  4. 计算反事实基线 eq?%28%20b%28s%2C%20a_%7B-i%7D%29%20%29
  5. 计算每个智能体的策略梯度,并更新策略参数。
  6. 重复上述过程,直至智能体策略收敛。

4.优势

  • 减少策略梯度的方差:通过引入反事实基线,有效地减少了策略更新过程中的高方差问题,使得策略更新更加稳定。
  • 适合多智能体协作环境:COMA 尤其适合智能体需要紧密合作的场景,比如多智能体联合行动或团队任务。

5.应用场景

  • 多智能体合作任务,如多机器人协作、多无人机编队等。
  • 需要去中心化控制、但全局奖励信息可用的场景。

 [Python] COMA 算法实现

        若是下面代码复现困难或者有问题,欢迎评论区留言;需要以整个项目形式的代码,请在评论区留下您的邮箱,以便于及时分享给您(私信难以及时回复)。

主要代码:

import torch
import os
from network.base_net import RNN
from network.commnet import CommNet
from network.g2anet import G2ANet
from network.coma_critic import ComaCritic
from common.utils import td_lambda_target


class COMA:
    def __init__(self, args):
        self.n_actions = args.n_actions
        self.n_agents = args.n_agents
        self.state_shape = args.state_shape
        self.obs_shape = args.obs_shape
        actor_input_shape = self.obs_shape  # actor网络输入的维度,和vdn、qmix的rnn输入维度一样,使用同一个网络结构
        critic_input_shape = self._get_critic_input_shape()  # critic网络输入的维度
        # 根据参数决定RNN的输入维度
        if args.last_action:
            actor_input_shape += self.n_actions
        if args.reuse_network:
            actor_input_shape += self.n_agents
        self.args = args

        # 神经网络
        # 每个agent选动作的网络,输出当前agent所有动作对应的概率,用该概率选动作的时候还需要用softmax再运算一次。
        if self.args.alg == 'coma':
            print('Init alg coma')
            self.eval_rnn = RNN(actor_input_shape, args)
        elif self.args.alg == 'coma+commnet':
            print('Init alg coma+commnet')
            self.eval_rnn = CommNet(actor_input_shape, args)
        elif self.args.alg == 'coma+g2anet':
            print('Init alg coma+g2anet')
            self.eval_rnn = G2ANet(actor_input_shape, args)
        else:
            raise Exception("No such algorithm")

        # 得到当前agent的所有可执行动作对应的联合Q值,得到之后需要用该Q值和actor网络输出的概率计算advantage
        self.eval_critic = ComaCritic(critic_input_shape, self.args)
        self.target_critic = ComaCritic(critic_input_shape, self.args)

        if self.args.cuda:
            self.eval_rnn.cuda()
            self.eval_critic.cuda()
            self.target_critic.cuda()

        self.model_dir = args.model_dir + '/' + args.alg + '/' + args.map
        # 如果存在模型则加载模型
        if self.args.load_model:
            if os.path.exists(self.model_dir + '/rnn_params.pkl'):
                path_rnn = self.model_dir + '/rnn_params.pkl'
                path_coma = self.model_dir + '/critic_params.pkl'
                map_location = 'cuda:0' if self.args.cuda else 'cpu'
                self.eval_rnn.load_state_dict(torch.load(path_rnn, map_location=map_location))
                self.eval_critic.load_state_dict(torch.load(path_coma, map_location=map_location))
                print('Successfully load the model: {} and {}'.format(path_rnn, path_coma))
            else:
                raise Exception("No model!")

        # 让target_net和eval_net的网络参数相同
        self.target_critic.load_state_dict(self.eval_critic.state_dict())

        self.rnn_parameters = list(self.eval_rnn.parameters())
        self.critic_parameters = list(self.eval_critic.parameters())

        if args.optimizer == "RMS":
            self.critic_optimizer = torch.optim.RMSprop(self.critic_parameters, lr=args.lr_critic)
            self.rnn_optimizer = torch.optim.RMSprop(self.rnn_parameters, lr=args.lr_actor)
        self.args = args

        # 执行过程中,要为每个agent都维护一个eval_hidden
        # 学习过程中,要为每个episode的每个agent都维护一个eval_hidden
        self.eval_hidden = None

    def _get_critic_input_shape(self):
        # state
        input_shape = self.state_shape  # 48
        # obs
        input_shape += self.obs_shape  # 30
        # agent_id
        input_shape += self.n_agents  # 3
        # 所有agent的当前动作和上一个动作
        input_shape += self.n_actions * self.n_agents * 2  # 54

        return input_shape

    def learn(self, batch, max_episode_len, train_step, epsilon):  # train_step表示是第几次学习,用来控制更新target_net网络的参数
        episode_num = batch['o'].shape[0]
        self.init_hidden(episode_num)
        for key in batch.keys():  # 把batch里的数据转化成tensor
            if key == 'u':
                batch[key] = torch.tensor(batch[key], dtype=torch.long)
            else:
                batch[key] = torch.tensor(batch[key], dtype=torch.float32)
        u, r, avail_u, terminated = batch['u'], batch['r'],  batch['avail_u'], batch['terminated']
        mask = (1 - batch["padded"].float()).repeat(1, 1, self.n_agents)  # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习
        if self.args.cuda:
            u = u.cuda()
            mask = mask.cuda()
        # 根据经验计算每个agent的Q值,从而跟新Critic网络。然后计算各个动作执行的概率,从而计算advantage去更新Actor。
        q_values = self._train_critic(batch, max_episode_len, train_step)  # 训练critic网络,并且得到每个agent的所有动作的Q值
        action_prob = self._get_action_prob(batch, max_episode_len, epsilon)  # 每个agent的所有动作的概率

        q_taken = torch.gather(q_values, dim=3, index=u).squeeze(3)  # 每个agent的选择的动作对应的Q值
        pi_taken = torch.gather(action_prob, dim=3, index=u).squeeze(3)  # 每个agent的选择的动作对应的概率
        pi_taken[mask == 0] = 1.0  # 因为要取对数,对于那些填充的经验,所有概率都为0,取了log就是负无穷了,所以让它们变成1
        log_pi_taken = torch.log(pi_taken)


        # 计算advantage
        baseline = (q_values * action_prob).sum(dim=3, keepdim=True).squeeze(3).detach()
        advantage = (q_taken - baseline).detach()
        loss = - ((advantage * log_pi_taken) * mask).sum() / mask.sum()
        self.rnn_optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(self.rnn_parameters, self.args.grad_norm_clip)
        self.rnn_optimizer.step()
        # print('Training: loss is', loss.item())
        # print('Training: critic params')
        # for params in self.eval_critic.named_parameters():
        #     print(params)
        # print('Training: actor params')
        # for params in self.eval_rnn.named_parameters():
        #     print(params)

    def _get_critic_inputs(self, batch, transition_idx, max_episode_len):
        # 取出所有episode上该transition_idx的经验
        obs, obs_next, s, s_next = batch['o'][:, transition_idx], batch['o_next'][:, transition_idx],\
                                   batch['s'][:, transition_idx], batch['s_next'][:, transition_idx]
        u_onehot = batch['u_onehot'][:, transition_idx]
        if transition_idx != max_episode_len - 1:
            u_onehot_next = batch['u_onehot'][:, transition_idx + 1]
        else:
            u_onehot_next = torch.zeros(*u_onehot.shape)
        # s和s_next是二维的,没有n_agents维度,因为所有agent的s一样。其他都是三维的,到时候不能拼接,所以要把s转化成三维的
        s = s.unsqueeze(1).expand(-1, self.n_agents, -1)
        s_next = s_next.unsqueeze(1).expand(-1, self.n_agents, -1)
        episode_num = obs.shape[0]
        # 因为coma的critic用到的是所有agent的动作,所以要把u_onehot最后一个维度上当前agent的动作变成所有agent的动作
        u_onehot = u_onehot.view((episode_num, 1, -1)).repeat(1, self.n_agents, 1)
        u_onehot_next = u_onehot_next.view((episode_num, 1, -1)).repeat(1, self.n_agents, 1)

        if transition_idx == 0:  # 如果是第一条经验,就让前一个动作为0向量
            u_onehot_last = torch.zeros_like(u_onehot)
        else:
            u_onehot_last = batch['u_onehot'][:, transition_idx - 1]
            u_onehot_last = u_onehot_last.view((episode_num, 1, -1)).repeat(1, self.n_agents, 1)

        inputs, inputs_next = [], []
        # 添加状态
        inputs.append(s)
        inputs_next.append(s_next)
        # 添加obs
        inputs.append(obs)
        inputs_next.append(obs_next)
        # 添加所有agent的上一个动作
        inputs.append(u_onehot_last)
        inputs_next.append(u_onehot)

        # 添加当前动作
        '''
        因为coma对于当前动作,输入的是其他agent的当前动作,不输入当前agent的动作,为了方便起见,每次虽然输入当前agent的
        当前动作,但是将其置为0相量,也就相当于没有输入。
        '''
        action_mask = (1 - torch.eye(self.n_agents))  # th.eye()生成一个二维对角矩阵
        # 得到一个矩阵action_mask,用来将(episode_num, n_agents, n_agents * n_actions)的actions中每个agent自己的动作变成0向量
        action_mask = action_mask.view(-1, 1).repeat(1, self.n_actions).view(self.n_agents, -1)
        inputs.append(u_onehot * action_mask.unsqueeze(0))
        inputs_next.append(u_onehot_next * action_mask.unsqueeze(0))

        # 添加agent编号对应的one-hot向量
        '''
        因为当前的inputs三维的数据,每一维分别代表(episode编号,agent编号,inputs维度),直接在后面添加对应的向量
        即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的
        agent编号恰好就是一个单位矩阵,即对角线为1,其余为0
        '''
        inputs.append(torch.eye(self.n_agents).unsqueeze(0).expand(episode_num, -1, -1))
        inputs_next.append(torch.eye(self.n_agents).unsqueeze(0).expand(episode_num, -1, -1))

        # 要把inputs中的5项输入拼起来,并且要把其维度从(episode_num, n_agents, inputs)三维转换成(episode_num * n_agents, inputs)二维
        inputs = torch.cat([x.reshape(episode_num * self.n_agents, -1) for x in inputs], dim=1)
        inputs_next = torch.cat([x.reshape(episode_num * self.n_agents, -1) for x in inputs_next], dim=1)
        return inputs, inputs_next

    def _get_q_values(self, batch, max_episode_len):
        episode_num = batch['o'].shape[0]
        q_evals, q_targets = [], []
        for transition_idx in range(max_episode_len):
            inputs, inputs_next = self._get_critic_inputs(batch, transition_idx, max_episode_len)
            if self.args.cuda:
                inputs = inputs.cuda()
                inputs_next = inputs_next.cuda()
            # 神经网络输入的是(episode_num * n_agents, inputs)二维数据,得到的是(episode_num * n_agents, n_actions)二维数据
            q_eval = self.eval_critic(inputs)
            q_target = self.target_critic(inputs_next)

            # 把q值的维度重新变回(episode_num, n_agents, n_actions)
            q_eval = q_eval.view(episode_num, self.n_agents, -1)
            q_target = q_target.view(episode_num, self.n_agents, -1)
            q_evals.append(q_eval)
            q_targets.append(q_target)
        # 得的q_evals和q_targets是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions)
        # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组
        q_evals = torch.stack(q_evals, dim=1)
        q_targets = torch.stack(q_targets, dim=1)
        return q_evals, q_targets

    def _get_actor_inputs(self, batch, transition_idx):
        # 取出所有episode上该transition_idx的经验,u_onehot要取出所有,因为要用到上一条
        obs, u_onehot = batch['o'][:, transition_idx], batch['u_onehot'][:]
        episode_num = obs.shape[0]
        inputs = []
        inputs.append(obs)
        # 给inputs添加上一个动作、agent编号

        if self.args.last_action:
            if transition_idx == 0:  # 如果是第一条经验,就让前一个动作为0向量
                inputs.append(torch.zeros_like(u_onehot[:, transition_idx]))
            else:
                inputs.append(u_onehot[:, transition_idx - 1])
        if self.args.reuse_network:
            # 因为当前的inputs三维的数据,每一维分别代表(episode编号,agent编号,inputs维度),直接在dim_1上添加对应的向量
            # 即可,比如给agent_0后面加(1, 0, 0, 0, 0),表示5个agent中的0号。而agent_0的数据正好在第0行,那么需要加的
            # agent编号恰好就是一个单位矩阵,即对角线为1,其余为0
            inputs.append(torch.eye(self.args.n_agents).unsqueeze(0).expand(episode_num, -1, -1))
        # 要把inputs中的三个拼起来,并且要把episode_num个episode、self.args.n_agents个agent的数据拼成40条(40,96)的数据,
        # 因为这里所有agent共享一个神经网络,每条数据中带上了自己的编号,所以还是自己的数据
        inputs = torch.cat([x.reshape(episode_num * self.args.n_agents, -1) for x in inputs], dim=1)
        return inputs

    def _get_action_prob(self, batch, max_episode_len, epsilon):
        episode_num = batch['o'].shape[0]
        avail_actions = batch['avail_u']  # coma不用target_actor,所以不需要最后一个obs的下一个可执行动作
        action_prob = []
        for transition_idx in range(max_episode_len):
            inputs = self._get_actor_inputs(batch, transition_idx)  # 给obs加last_action、agent_id
            if self.args.cuda:
                inputs = inputs.cuda()
                self.eval_hidden = self.eval_hidden.cuda()
            outputs, self.eval_hidden = self.eval_rnn(inputs, self.eval_hidden)  # inputs维度为(40,96),得到的q_eval维度为(40,n_actions)
            # 把q_eval维度重新变回(8, 5,n_actions)
            outputs = outputs.view(episode_num, self.n_agents, -1)
            prob = torch.nn.functional.softmax(outputs, dim=-1)
            action_prob.append(prob)
        # 得的action_prob是一个列表,列表里装着max_episode_len个数组,数组的的维度是(episode个数, n_agents,n_actions)
        # 把该列表转化成(episode个数, max_episode_len, n_agents,n_actions)的数组
        action_prob = torch.stack(action_prob, dim=1).cpu()

        action_num = avail_actions.sum(dim=-1, keepdim=True).float().repeat(1, 1, 1, avail_actions.shape[-1])   # 可以选择的动作的个数
        action_prob = ((1 - epsilon) * action_prob + torch.ones_like(action_prob) * epsilon / action_num)
        action_prob[avail_actions == 0] = 0.0  # 不能执行的动作概率为0

        # 因为上面把不能执行的动作概率置为0,所以概率和不为1了,这里要重新正则化一下。执行过程中Categorical会自己正则化。
        action_prob = action_prob / action_prob.sum(dim=-1, keepdim=True)
        # 因为有许多经验是填充的,它们的avail_actions都填充的是0,所以该经验上所有动作的概率都为0,在正则化的时候会得到nan。
        # 因此需要再一次将该经验对应的概率置为0
        action_prob[avail_actions == 0] = 0.0
        if self.args.cuda:
            action_prob = action_prob.cuda()
        return action_prob

    def init_hidden(self, episode_num):
        # 为每个episode中的每个agent都初始化一个eval_hidden
        self.eval_hidden = torch.zeros((episode_num, self.n_agents, self.args.rnn_hidden_dim))

    def _train_critic(self, batch, max_episode_len, train_step):
        u, r, avail_u, terminated = batch['u'], batch['r'], batch['avail_u'], batch['terminated']
        u_next = u[:, 1:]
        padded_u_next = torch.zeros(*u[:, -1].shape, dtype=torch.long).unsqueeze(1)
        u_next = torch.cat((u_next, padded_u_next), dim=1)
        mask = (1 - batch["padded"].float()).repeat(1, 1, self.n_agents)  # 用来把那些填充的经验的TD-error置0,从而不让它们影响到学习
        if self.args.cuda:
            u = u.cuda()
            u_next = u_next.cuda()
            mask = mask.cuda()
        # 得到每个agent对应的Q值,维度为(episode个数, max_episode_len, n_agents,n_actions)
        # q_next_target为下一个状态-动作对应的target网络输出的Q值,没有包括reward
        q_evals, q_next_target = self._get_q_values(batch, max_episode_len)
        q_values = q_evals.clone()  # 在函数的最后返回,用来计算advantage从而更新actor
        # 取每个agent动作对应的Q值,并且把最后不需要的一维去掉,因为最后一维只有一个值了

        q_evals = torch.gather(q_evals, dim=3, index=u).squeeze(3)
        q_next_target = torch.gather(q_next_target, dim=3, index=u_next).squeeze(3)
        targets = td_lambda_target(batch, max_episode_len, q_next_target.cpu(), self.args)
        if self.args.cuda:
            targets = targets.cuda()
        td_error = targets.detach() - q_evals
        masked_td_error = mask * td_error  # 抹掉填充的经验的td_error

        # 不能直接用mean,因为还有许多经验是没用的,所以要求和再比真实的经验数,才是真正的均值
        loss = (masked_td_error ** 2).sum() / mask.sum()
        # print('Loss is ', loss)
        self.critic_optimizer.zero_grad()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(self.critic_parameters, self.args.grad_norm_clip)
        self.critic_optimizer.step()
        if train_step > 0 and train_step % self.args.target_update_cycle == 0:
            self.target_critic.load_state_dict(self.eval_critic.state_dict())
        return q_values

    def save_model(self, train_step):
        num = str(train_step // self.args.save_cycle)
        if not os.path.exists(self.model_dir):
            os.makedirs(self.model_dir)
        torch.save(self.eval_critic.state_dict(), self.model_dir + '/' + num + '_critic_params.pkl')
        torch.save(self.eval_rnn.state_dict(),  self.model_dir + '/' + num + '_rnn_params.pkl')

     文章若有不当和不正确之处,还望理解与指出。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请联系博主删除。如有错误、疑问和侵权,欢迎评论留言联系作者,或者关注VX公众号:Rain21321,联系作者。

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。