基于昇腾D910B 推理bge-reranker-base
【摘要】 本文将介绍在昇腾910B平台上如何推理bge-reranker-base模型
/**************************如有任何问题和疑问,请评论区留言*********************************/
0.前提条件
0.1 登录机器
机器已开通,密码已获取,能通过ssh登录
0.2 检查NPU设备
NPU设备检查:运行npu-smi info命令,返回如下设备npu设备信息。NPU设备型号(Name列)是910B系列
0.3 docker安装
#检查docker是否安装:docker -v,如如尚未安装,运行以下命令进行docker安装
yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc.aarch64
#配置IP转发,用于容器内的网络访问:
sed -i 's/net\.ipv4\.ip_forward=0/net\.ipv4\.ip_forward=1/g' /etc/sysctl.conf
sysctl -p | grep net.ipv4.ip_forward
0.4 获取镜像
docker pull swr.cn-southwest-2.myhuaweicloud.com/atelier/pytorch_2_1_ascend:pytorch_2.1.0-cann_8.0.rc3-py_3.9-hce_2.0.2409-aarch64-snt9b-20241112192643-c45ac6b
0.5 启动镜像
启动容器镜像。启动前请先按照参数说明修改${}中的参数。
docker run -it --net=host \
--device=/dev/davinci0 \
--device=/dev/davinci1 \
--device=/dev/davinci2 \
--device=/dev/davinci3 \
--device=/dev/davinci4 \
--device=/dev/davinci5 \
--device=/dev/davinci6 \
--device=/dev/davinci7 \
--device=/dev/davinci_manager \
--device=/dev/devmm_svm \
--device=/dev/hisi_hdc \
--shm-size=32g \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
-v /var/log/npu/:/usr/slog \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v ${work_dir}:${container_work_dir} \
--name ${container_name} \
${image_id} \
/bin/bash
参数说明:
device=/dev/davinci0,..., --device=/dev/davinci7:挂载NPU设备,示例中挂载了8张卡davinci0~davinci7,可根据需要选择挂载卡数。
${work_dir}:${container_work_dir} 代表需要在容器中挂载宿主机的目录。宿主机和容器使用不同的文件系统,work_dir为宿主机中工作目录,目录下存放着训练所需代码、数据等文件。container_dir为要挂载到的容器中的目录。为方便两个地址可以相同。
shm-size:共享内存大小。
${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。
${image_id}:镜像ID,通过docker images查看刚拉取的镜像ID。
注意
容器不能挂载到/home/ma-user目录,此目录为ma-user用户家目录。如果容器挂载到/home/ma-user下,拉起容器时会与基础镜像冲突,导致基础镜像不可用。
driver及npu-smi需同时挂载至容器。
不要将多个容器绑到同一个NPU上,会导致后续的容器无法正常使用NPU功能。
1. 推理验证
在容器工作目录container_work_dir下执行以下操作
1.1 下载模型文件
下载链接: https://huggingface.co/BAAI/bge-reranker-base/tree/main (下载全部文件)
1.2 安装 FlagEmbedding
pip install FlagEmbedding
1.3 推理验证
推理demo代码
from FlagEmbedding import FlagReranker
import torch
import torch_npu
import time
def main():
reranker = FlagReranker('model', use_fp16=True, devices="npu:0") # Setting use_fp16 to True speeds up computation with a slight performance degradation
queries1 = ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']
score = reranker.compute_score(queries1)
print("score: ", score)
queries_all = [queries1 for _ in range(100)]
start_time = time.time()
scores = reranker.compute_score(queries_all)
print("infer time(s): ", time.time() - start_time)
if __name__ == "__main__":
torch_npu.npu.config.allow_internal_format = False
torch.npu.set_compile_mode(jit_compile=False)
main()
推理结果,
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)