雪花算法完全解读
【摘要】 SnowFlake算法是Twitter开源的分布式ID生成算法。核心思想就是:使用一个64 bit的 long 型的数字作为全局唯一ID。算法中还引入了时间戳,基本上保证了自增特性。其特点是将64位的long型ID分为四个部分,分别为:时间戳、机器ID和序列号,详情查看结构图原理SnowFlake算法生成ID的结果是一个64bit大小的整数,结构如下图:解析第一个部分:1个bit,无意义,固...
SnowFlake算法是Twitter开源的分布式ID生成算法。核心思想就是:使用一个64 bit的 long 型的数字作为全局唯一ID。算法中还引入了时间戳,基本上保证了自增特性。
其特点是将64位的long型ID分为四个部分,分别为:时间戳、机器ID和序列号,详情查看结构图
原理
SnowFlake算法生成ID的结果是一个64bit大小的整数,结构如下图:
解析
- 第一个部分:
1个bit
,无意义,固定为0。二进制中最高位是符号位,1表示负数,0表示正数。ID都是正整数,所以固定为0。 - 第二个部分:
41个bit
,表示时间戳,精确到毫秒,2^41/(1000_60_60_24_365)=69,大概可以使用 69 年。时间戳带有自增属性。 - 第三个部分:
10个bit
,表示10位的机器标识,最多支持2^10=1024个节点。此部分也可拆分成5位datacenterId和5位workerId,datacenterId表示机房ID,workerId表示机器ID。 - 第四部分:
12个bit
,表示序列号,同一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下,可以生成 2^12=4096 个不重复 id。
特点
- 由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。
- 对于每一个雪花算法服务,需要先指定 10 位的机器码,这个根据自身业务进行设定即可。例如机房号+机器号,机器号+服务号,或者是其他可区别标识的 10 位比特位的整数值都行。
优点
- 高并发分布式环境下生成不重复 id,每秒可生成百万个不重复 id。
- 基于时间戳,以及同一时间戳下序列号自增,基本保证 id 有序递增。
- 不依赖第三方库或者中间件。
- 算法简单,在内存中进行,效率高。
-
缺点
- 依赖服务器时间,服务器时钟回拨时可能会生成重复 id。算法中可通过记录最后一个生成 id 时的时间戳来解决,每次生成 id 之前比较当前服务器时钟是否被回拨,避免生成重复 id。
注意
- 雪花算法每一部分占用的比特位数量并不是固定死的。例如你的业务可能达不到 69 年之久,那么可用减少时间戳占用的位数,雪花算法服务需要部署的节点超过1024 台,那么可将减少的位数补充给机器码用。
- 雪花算法中 41 位比特位不是直接用来存储当前服务器毫秒时间戳的,而是需要当前服务器时间戳减去某一个初始时间戳值,一般可以使用服务上线时间作为初始时间戳值。
- 对于机器码,可根据自身情况做调整,例如机房号,服务器号,业务号,机器 IP 等都是可使用的。对于部署的不同雪花算法服务中,最后计算出来的机器码能区分开来即可。
public class SnowFlake {
/**
* 起始的时间戳(可设置当前时间之前的邻近时间)
*/
private final static long START_STAMP = 1480166465631L;
/**
* 序列号占用的位数
*/
private final static long SEQUENCE_BIT = 12;
/**
* 机器标识占用的位数
*/
private final static long MACHINE_BIT = 5;
/**
* 数据中心占用的位数
*/
private final static long DATA_CENTER_BIT = 5;
/**
* 每一部分的最大值
*/
private final static long MAX_DATA_CENTER_NUM = ~(-1L << DATA_CENTER_BIT);
private final static long MAX_MACHINE_NUM = ~(-1L << MACHINE_BIT);
private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BIT);
/**
* 每一部分向左的位移
*/
private final static long MACHINE_LEFT = SEQUENCE_BIT;
private final static long DATA_CENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
private final static long TIMESTAMP_LEFT = DATA_CENTER_LEFT + DATA_CENTER_BIT;
/**
* 数据中心ID(0~31)
*/
private final long dataCenterId;
/**
* 工作机器ID(0~31)
*/
private final long machineId;
/**
* 毫秒内序列(0~4095)
*/
private long sequence = 0L;
/**
* 上次生成ID的时间截
*/
private long lastStamp = -1L;
public SnowFlake(long dataCenterId, long machineId) {
if (dataCenterId > MAX_DATA_CENTER_NUM || dataCenterId < 0) {
throw new IllegalArgumentException("dataCenterId can't be greater than MAX_DATA_CENTER_NUM or less than " +
"0");
}
if (machineId > MAX_MACHINE_NUM || machineId < 0) {
throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
}
this.dataCenterId = dataCenterId;
this.machineId = machineId;
}
/**
* 产生下一个ID
*/
public synchronized long nextId() {
long currStamp = getNewStamp();
if (currStamp < lastStamp) {
throw new RuntimeException("Clock moved backwards. Refusing to generate id");
}
if (currStamp == lastStamp) {
//相同毫秒内,序列号自增
sequence = (sequence + 1) & MAX_SEQUENCE;
//同一毫秒的序列数已经达到最大
if (sequence == 0L) {
//阻塞到下一个毫秒,获得新的时间戳
currStamp = getNextMill();
}
} else {
//不同毫秒内,序列号置为0
sequence = 0L;
}
lastStamp = currStamp;
// 移位并通过或运算拼到一起组成64位的ID
return (currStamp - START_STAMP) << TIMESTAMP_LEFT //时间戳部分
| dataCenterId << DATA_CENTER_LEFT //数据中心部分
| machineId << MACHINE_LEFT //机器标识部分
| sequence; //序列号部分
}
private long getNextMill() {
long mill = getNewStamp();
while (mill <= lastStamp) {
mill = getNewStamp();
}
return mill;
}
private long getNewStamp() {
return System.currentTimeMillis();
}
public static void main(String[] args) {
SnowFlake snowFlake = new SnowFlake(11, 11);
long start = System.currentTimeMillis();
for (int i = 0; i < 10; i++) {
System.out.println(snowFlake.nextId());
}
System.out.println(System.currentTimeMillis() - start);
}
}
【声明】本内容来自华为云开发者社区博主,不代表华为云及华为云开发者社区的观点和立场。转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息,否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)