【数据结构/C语言】深入理解 双向链表

举报
倔强的石头 发表于 2024/10/23 23:12:57 2024/10/23
【摘要】 双向链表是一种常见的数据结构,与单向链表类似,但它允许我们从两个方向遍历链表:向前和向后。每个节点包含三个部分:一个数据元素和两个指针,一个指向链表中的前一个节点,另一个指向链表中的下一个节点。 一般情况下,我们所说的双向链表指的是带头节点,双向,循环链表,以下若无特殊说明,均代表此含义。

目录

一、双向链表的基本概念

双向链表的简介

双向链表的特点

 双向链表的优缺点

二、双向链表的结构

双向链表节点的结构

双向链表的整体结构

三、双向链表的实现方法

1.双向链表的初始化

2.双向链表的头插

3.双向链表的尾插

4.双向链表的头删

5.双向链表的尾删

6.查找节点

7.在指定位置之前插入节点

8.删除指定位置节点

9.打印链表数据

10.双向链表销毁

四、C语言实现代码及测试

 DouSlist.h 双链表头文件

DouSList.c  双链表源文件

test.c   测试文件及测试结果

五、双向链表的应用场景



一、双向链表的基本概念

双向链表的简介

双向链表是一种常见的数据结构,与单向链表类似,但它允许我们从两个方向遍历链表:向前和向后。每个节点包含三个部分:一个数据元素和两个指针,一个指向链表中的前一个节点,另一个指向链表中的下一个节点。


一般情况下,我们所说的双向链表指的是带头节点,双向,循环链表,以下若无特殊说明,均代表此含义。


以下是常见的单链表与双链表的图示及区别

编辑


双向链表的特点

  • 双向遍历:由于每个节点都包含指向前一个节点和下一个节点的指针,因此我们可以从链表的任何一个节点开始,向前或向后遍历链表。
  • 插入和删除操作:在双向链表中插入或删除节点通常比单向链表更加高效,因为我们可以直接访问要插入或删除节点的前一个和/或后一个节点,从而避免了对链表的遍历。
  • 空间效率:与数组相比,双向链表在内存使用上更加灵活。链表可以在运行时动态地分配和释放内存,而不需要预先分配固定大小的内存块。

 双向链表的优缺点

优点 

  • 动态分配内存,空间效率高。
  • 插入和删除操作效率高,特别是当知道要操作节点的位置时。
  • 可以从两个方向遍历链表。

缺点

  • 相对于数组,链表在内存使用上可能不够紧凑,因为每个节点都需要额外的空间来存储指针。
  • 访问链表中特定位置的元素需要从头或尾开始遍历链表,这可能导致效率较低(尽管可以使用哈希表等数据结构来优化访问速度)。

二、双向链表的结构

双向链表节点的结构

双向链表中的每个节点通常包含以下部分:

  1. 数据元素:可以是任何类型的数据,如整数、浮点数、字符串或对象。
  2. prev 指针:指向前一个节点的指针。
  3. next 指针:指向下一个节点的指针。
typedef int LTDataType;//数据类型重定义,可以是任意数据类型
typedef struct ListNode//双向链表节点结构
{
	LTDataType data;//数据
	struct ListNode* prev;//指向前一个节点的指针
	struct ListNode* next;//指向下一个节点的指针
}LTNode;


双向链表的整体结构

相比单链表只有独立存在的每个节点,双向链表多了哨兵位节点,该节点作为头结点,不存储有效数据,只有指向第一个有效节点的next指针和指向尾节点的prev指针。
只要链表存在,哨兵位节点就存在


三、双向链表的实现方法

1.双向链表的初始化

双向链表的初始化也就是创建一个哨兵位节点,所以实现初始化之前需要先封装一个节点申请函数

单独封装的申请节点函数

  • 动态申请节点大小的空间
  • 判空
  • 通过形参接受的数据初始化节点数据部分
  • next指针和prev指针都指向自身(因为双向链表是循环链表)
  • 返回节点地址
LTNode* NewNode(LTDataType x)//申请节点
{
	LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
	if (newnode == NULL)
	{
		perror("NewNode\n");
		exit(1);
	}
	newnode->data = x;//根据参数初始化数据
	newnode->next = newnode->prev = newnode;//两个指针初始都指向自身
	return newnode;
}


双向链表初始化

  • 调用申请节点函数创建一个哨兵位节点,作为链表的头结点
  • 返回链表头结点地址


注意:

双向链表因为有哨兵位的存在,链表始终不为空,哨兵位节点不会被改变,所以不再需要传递地址,以及用二级指针接收。这一点区别于单链表实现

LTNode* LTInit()            //链表初始化
{
	LTNode* newnode = NewNode(-1);
	return newnode;
}


2.双向链表的头插

双向链表头插


  • 头插就是将新节点插入到哨兵位节点和第一个有效节点之间
  • 形参接收一个哨兵位地址和要插入的数据
  • 首先对哨兵位地址判空,判断链表结构是否正常
  • 申请新节点,存入要插入的数据
  • 接下来是移动指针
  • 一般情况下应当先调整新节点的指针,因为新节点指针调整不会影响到原链表:
  • 新节点prev指向哨兵位,next指向哨兵位的next所指向节点
  • 然后,调整第一个有效节点的prev指针,不再指向哨兵位而是指向新节点;调整哨兵位next指针,不再指向原来的第一个有效节点,而是指向新节点
  • 新节点插入完成

 编辑

void LTPushFront(LTNode* phead, LTDataType x)//头插
{
	assert(phead);//判空
	LTNode* newnode = NewNode(x);//申请节点

	newnode->next = phead->next;//改变新节点指针指向
	newnode->prev = phead;

	phead->next->prev = newnode;//改变原链表相关节点指针指向
	phead->next = newnode;

}


3.双向链表的尾插

双向链表尾插

  • 尾插就是将新节点插入到原链表最后一个节点和哨兵位之间
  • 首先对哨兵位地址判空,判断链表结构是否正常
  • 申请新节点,存入要插入的数据
  • 调整指针:
  • 新节点next指向哨兵位节点,prev指向原链表最后一个有效节点(哨兵位prev所指向的节点)
  • 原链表最后一个有效节点的next指向新节点
  • 哨兵位prev指向新节点
  • 新节点尾差完成

编辑

void LTPushBack(LTNode* phead, LTDataType x)//尾插
{
	assert(phead);//判空
	LTNode* newnode = NewNode(x);//申请节点

	newnode->next = phead;//改变新节点指针指向
	newnode->prev = phead->prev;

	phead->prev->next = newnode;//改变原链表相关节点指针指向
	phead->prev = newnode;
}


4.双向链表的头删

双向链表头删


  • 头删就是将双向链表第一个有效节点删除
  • (头删的前提是链表至少存在一个有效节点)
  • 首先创建一个指针del指向要删除的节点(哨兵位节点next指向的节点)
  • 然后将第二个有效节点的prev指针指向哨兵位节点
  • 哨兵位节点的next指针指向第二个有效节点
  • 指针修改完成,此时第二个有效节点成为链表的第一个有效节点,释放del指向的节点
  • (如果删除之前链表只有一个节点,删除完之后只剩下一个哨兵位节点,两个指针都指向自己)

编辑

void LTPopFront(LTNode* phead)		//头删
{
	assert(phead && phead->next != phead);//判空
	LTNode* del = phead->next;//暂时存储要删除的节点

	del->next->prev = phead;//移动指针
	phead->next = del->next;

	free(del);//释放节点空间
	del = NULL;
}


5.双向链表的尾删

双向链表尾删


  • 尾删就是将双向链表的最后一个有效节点删除
  • (尾删的前提是至少存在一个有效节点)
  • 首先创建一个指针del指向要删除的节点(哨兵位prev指向节点)
  • 然后将倒数第二个节点的next指针指向哨兵位
  • 将哨兵位的prev指针指向倒数第二个节点
  • 指针修改完成,此时倒数第二个节点成为最后一个节点,释放del指向的节点
  • (如果删除之前链表只有一个节点,删除完之后只剩下一个哨兵位节点,两个指针都指向自己)

编辑

void LTPopBack(LTNode* phead)		//尾删
{
	assert(phead && phead->next != phead);//判空
	LTNode* del = phead->prev;//暂时存储要删除的节点

	del->prev->next = phead;//移动指针
	phead->prev = del->prev;

	free(del);//释放节点空间
	del = NULL;
}


6.查找节点

双向链表查找(根据数据查找节点)

  • 首先对哨兵位地址判空,否则可能对空地址解引用
  • 创建一个遍历链表的指针,从第一个有效节点开始,将节点数据与要查找的数据进行比对,如果相同返回节点地址
  • 出循环,说明未找到,返回NULL
LTNode* LTFind(LTNode* phead, LTDataType x)//查找节点
{
	assert(phead);//判空

	LTNode* pcur = phead->next;//遍历链表的指针

	while (pcur!= phead)
	{
		if (pcur->data == x)
			return pcur;
		pcur = pcur->next;
	}
	return NULL;
}


7.在指定位置之前插入节点

双向链表在指定位置之前插入节点:


  • 插入的前提是指定位置存在
  • 申请新节点,存入要插入的数据
  • 调整指针:
  • 临时创建一个指针prev指向指定位置节点的perv指向节点
  • 新节点next指针指向指定位置节点,prev指针指向prev节点
  • 然后再修改原链表指针:
  • 指定位置节点的prev指针指向新节点,prev节点的next指针指向新节点
  • 新节点插入完成
void LTInsert(LTNode* pos, LTDataType x)//在pos位置之前插入数据
{
	assert(pos);//判空
	LTNode* newnode = NewNode(x);//申请新节点

	newnode->next = pos;//改变新节点指针指向
	newnode->prev = pos->prev;

	pos->prev->next = newnode;//改变原链表相关节点指针指向
	pos->prev = newnode;

}


8.删除指定位置节点

双向链表删除指定位置节点

  • 删除指定节点的前提是该节点必须存在
  • 首先创建一个指针del指向要删除的节点
  • 然后将该节点的前一个结点的next指针指向它的后一个节点,后一个节点的prev指针指向他的前一个节点
  • 释放该节点
  • (如果删除之前链表只有一个节点,删除完之后只剩下一个哨兵位节点,两个指针都指向自己)

 编辑

void LTErase(LTNode* pos)//删除指定位置节点
{
	assert(pos);//判空
	pos->next->prev = pos->prev;//改变要删除节点的前后节点指针指向
	pos->prev->next = pos->next;

	free(pos);
	pos = NULL;

}


9.打印链表数据

双向链表数据打印

  • 首先对地址判空,防止对空地址解引用
  • 创建一个遍历链表的指针,从第一个有效节点打印数据,然后向后移动,直到指针遍历到哨兵位
void LTPrint(LTNode* phead)  //链表数据打印
{
	assert(phead);//判空
	LTNode* pcur = phead->next;//遍历链表的指针

	while (pcur != phead)//打印数据
	{
		printf("%d->", pcur->data);
		pcur = pcur->next;
	}
	printf("\n");
}


10.双向链表销毁

双向链表的销毁

  • 从第一个有效节点开始,创建指针循环遍历链表:
  • 创建next指针临时保存下一个节点,释放本节点,遍历指针指向next节点
  • 循环至有效节点全部被释放
  • 然后将哨兵位节点释放,指针置空,销毁完成


注意:

为了与其他配套函数的参数保持一致,这里的参数本该用二级指针接收,却用一级指针接收。出函数后,需要手动将哨兵位指针置空


四、C语言实现代码及测试

 DouSlist.h 双链表头文件

//DouSlist.h 双链表头文件
#define _CRT_SECURE_NO_WARNINGS 1

#include<stdio.h>
#include<stdlib.h>
#include<assert.h>

typedef int LTDataType;//数据类型重定义,可以是任意数据类型
typedef struct ListNode//双向链表节点结构
{
	LTDataType data;//数据
	struct ListNode* prev;//指向前一个节点的指针
	struct ListNode* next;//指向下一个节点的指针
}LTNode;

LTNode* NewNode(LTDataType x);//申请节点
LTNode* LTInit();             //链表初始化

void LTPushFront(LTNode* phead, LTDataType x);//头插
void LTPushBack(LTNode* phead, LTDataType x);//尾插

void LTPopBack(LTNode* phead);		//尾删
void LTPopFront(LTNode* phead);		//头删


LTNode* LTFind(LTNode* phead, LTDataType x);//查找节点

void LTInsert(LTNode* pos, LTDataType x);//在pos位置之后插入数据
void LTErase(LTNode* pos);//删除指定位置节点

void LTPrint(LTNode* phead);  //链表数据打印
void LTDestroy(LTNode* phead);//链表销毁


DouSList.c  双链表源文件

//DouSList.c  双链表源文件
#define _CRT_SECURE_NO_WARNINGS 1
#include"DouSList.h"

LTNode* NewNode(LTDataType x)//申请节点
{
	LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
	if (newnode == NULL)
	{
		perror("NewNode\n");
		exit(1);
	}
	newnode->data = x;//根据参数初始化数据
	newnode->next = newnode->prev = newnode;//两个指针初始都指向自身
	return newnode;
}
LTNode* LTInit()            //链表初始化
{
	LTNode* newnode = NewNode(-1);
	return newnode;
}
void LTPushFront(LTNode* phead, LTDataType x)//头插
{
	assert(phead);//判空
	LTNode* newnode = NewNode(x);//申请节点

	newnode->next = phead->next;//改变新节点指针指向
	newnode->prev = phead;

	phead->next->prev = newnode;//改变原链表相关节点指针指向
	phead->next = newnode;

}
void LTPushBack(LTNode* phead, LTDataType x)//尾插
{
	assert(phead);//判空
	LTNode* newnode = NewNode(x);//申请节点

	newnode->next = phead;//改变新节点指针指向
	newnode->prev = phead->prev;

	phead->prev->next = newnode;//改变原链表相关节点指针指向
	phead->prev = newnode;
}


void LTPopFront(LTNode* phead)		//头删
{
	assert(phead && phead->next != phead);//判空
	LTNode* del = phead->next;//暂时存储要删除的节点

	del->next->prev = phead;//移动指针
	phead->next = del->next;

	free(del);//释放节点空间
	del = NULL;
}

void LTPopBack(LTNode* phead)		//尾删
{
	assert(phead && phead->next != phead);//判空
	LTNode* del = phead->prev;//暂时存储要删除的节点

	del->prev->next = phead;//移动指针
	phead->prev = del->prev;

	free(del);//释放节点空间
	del = NULL;
}

LTNode* LTFind(LTNode* phead, LTDataType x)//查找节点
{
	assert(phead);//判空

	LTNode* pcur = phead->next;//遍历链表的指针

	while (pcur!= phead)
	{
		if (pcur->data == x)
			return pcur;
		pcur = pcur->next;
	}
	return NULL;
}

void LTInsert(LTNode* pos, LTDataType x)//在pos位置之前插入数据
{
	assert(pos);//判空
	LTNode* newnode = NewNode(x);//申请新节点

	newnode->next = pos;//改变新节点指针指向
	newnode->prev = pos->prev;

	pos->prev->next = newnode;//改变原链表相关节点指针指向
	pos->prev = newnode;

}

void LTErase(LTNode* pos)//删除指定位置节点
{
	assert(pos);//判空
	pos->next->prev = pos->prev;//改变要删除节点的前后节点指针指向
	pos->prev->next = pos->next;

	free(pos);
	pos = NULL;

}

void LTPrint(LTNode* phead)  //链表数据打印
{
	assert(phead);//判空
	LTNode* pcur = phead->next;//遍历链表的指针

	while (pcur != phead)//打印数据
	{
		printf("%d->", pcur->data);
		pcur = pcur->next;
	}
	printf("\n");
}

void LTDestroy(LTNode* phead)//链表销毁
{
	assert(phead);//判空
	LTNode* pcur = phead->next;//遍历链表的指针

	while (pcur != phead)//从第一个有效节点开始,逐个释放节点
	{
		LTNode* next = pcur->next;
		free(pcur);
		pcur = next;
	}
	free(phead);//释放哨兵位节点
	phead = NULL;

}

test.c   测试文件及测试结果

//test.c   测试文件
#define _CRT_SECURE_NO_WARNINGS 1
#include"DouSList.h"

void test1()
{
	LTNode* plist = LTInit();       //链表初始化
	LTPushFront(plist,1 );//头插
	LTPushFront(plist,2 );//头插
	LTPrint(plist);  //链表数据打印
	LTPushBack(plist, 3);//尾插
	LTPushBack(plist, 4);//尾插
	LTPrint(plist);  //链表数据打印

	LTPopBack(plist);		//尾删
	LTPopFront(plist);		//头删
	LTPrint(plist);  //链表数据打印

	LTNode* pos=LTFind(plist, 3);//查找
	LTInsert(pos, 5);//在pos位置之后插入数据
	LTPrint(plist);  //链表数据打印


	LTErase(pos);//删除指定位置节点
	pos = NULL;

	LTPrint(plist);  //链表数据打印

	LTDestroy(plist);//链表销毁
	plist = NULL;
}
int main()
{
	test1();
	return 0;
}

 编辑

五、双向链表的应用场景

双向链表在许多场景中都非常有用,包括:

  1. LRU 缓存淘汰策略:在操作系统和数据库等系统中,双向链表经常用于实现最近最少使用(LRU)缓存淘汰策略。当缓存满时,最久未使用的项(即链表尾部的项)将被删除。
  2. 双向队列:双向链表也可以用作双向队列(Deque),支持从队列的前端和后端添加和删除元素。
  3. 撤销/重做功能:在文本编辑器或图形编辑器中,双向链表可以用于实现撤销和重做功能。每当用户执行一个操作时,该操作可以作为一个节点添加到链表的前端。当用户选择撤销时,可以从链表的前端删除一个节点;当用户选择重做时,可以从链表的已删除节点列表中恢复一个节点。

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。