基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
1.程序功能描述
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解TSP问题中的应用。
2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
3.核心程序
while gen <= Iters
gen
%更新
for i=1:Npop
%交叉
Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Pbest(i,2:end-1));
Popd(i) = func_dist(Pops(i,:),Mdist); %计算距离
if Popd(i) < Pdbest(i)
Pbest(i,:) = Pops(i,:);
Pdbest(i) = Popd(i);
end
%更新Gbest
[mindis,index] = min(Pdbest);
if mindis < Gdbest
Gbest = Pbest(index,:);
Gdbest = mindis;
end
%粒子与Gbest交叉
Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Gbest(2:end-1));
Popd(i) = func_dist(Pops(i,:),Mdist);
if Popd(i) < Pdbest(i)
Pbest(i,:) = Pops(i,:);
Pdbest(i) = Popd(i);
end
%粒子变异
Pops(i,:) = func_Mut(Pops(i,:));
Popd(i) = func_dist(Pops(i,:),Mdist);
if Popd(i) < Pdbest(i)
Pbest(i,:)=Pops(i,:);
Pdbest(i)=Popd(i);
end
%更新Gbest
[mindis,index] = min(Pdbest); %最短距离
if mindis < Gdbest
Gbest = Pbest(index,:);
Gdbest = mindis;
end
end
%存储此代最短距离
gbest(gen)=Gdbest;
%更新迭代次数
gen=gen+1;
end
p=num2str(Gbest(1)); %配送路径
for i=2:length(Gbest)
p=[p,' -> ',num2str(Gbest(i))];
end
disp(p)
Gdbest
figure
plot(gbest,'LineWidth',2)
xlim([1 gen-1])
xlabel('迭代次数')
ylabel('最优距离(km)')
DrawPath(Gbest,City)
0013
4.本算法原理
旅行商问题(Traveling Salesman Problem, TSP)是组合优化领域的一个经典NP难问题,旨在寻找访问一系列城市并返回起点的最短路径。本文将详细介绍基于GA-PSO遗传粒子群混合优化算法在求解TSP问题中的应用,并通过标准的数学公式进行推导和解释。
4.1 TSP问题描述
TSP问题可以描述为:给定一个城市集合和每对城市之间的距离,要求找出访问每个城市一次并返回起点的最短路径。
4.2 遗传算法(Genetic Algorithm, GA)在TSP中的应用
遗传算法是一种模拟自然选择和遗传学机制的优化算法,适用于求解组合优化问题。在TSP问题中,GA通过编码生成初始路径种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。
编码方式:采用自然数编码,每个城市的编号代表一个基因,一条路径则由一串基因组成。
初始种群生成:随机生成一定数量的初始路径,构成初始种群。
适应度函数:以适应度函数来衡量每个个体的优劣。在TSP问题中,适应度函数通常取为路径长度的倒数。
选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
变异操作:通过随机交换路径中两个城市的位置来实现变异。
4.3子群优化算法(Particle Swarm Optimization, PSO)在TSP中的应用
粒子群优化算法是一种模拟鸟群觅食行为的优化算法,适用于连续和离散优化问题。在TSP问题中,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。
粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中城市的排列顺序决定。
速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:(v_{id} = w * v_{id} + c1 * rand() * (pbest_{id} - x_{id}) + c2 * rand() * (gbest_d - x_{id})),其中 (v_{id}) 表示第i个粒子在第d维上的速度,(x_{id}) 表示第i个粒子在第d维上的位置,(pbest_{id}) 表示第i个粒子在第d维上的历史最优位置,(gbest_d) 表示群体在第d维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:(x_{id} = x_{id} + v_{id})。需要注意的是,在更新位置时要保证新生成的路径满足TSP问题的约束条件。
4.4 GA-PSO混合优化算法在TSP中的应用
GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解TSP问题的效率和质量。具体步骤如下:
初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。
- 点赞
- 收藏
- 关注作者
评论(0)