基于模糊神经网络的移动机器人路径规划matlab仿真

举报
软件算法开发 发表于 2024/10/10 14:12:45 2024/10/10
【摘要】 1.程序功能描述基于模糊神经网络的移动机器人路径规划1.环境地图中的障碍物为静态、未知障碍物,可以随机设置。(一般设置5~7个,为计算简便设置成规则性状的障碍物)2.机器人的行进方向为X轴的正方向,X轴逆时针旋转90°即为Y轴。两驱动轮之间的距离为50cm,驱动轮的直径为30cm。机器人的最大运动速度设为0.8m/s3.为简化计算,在机器人的正前方及沿顺、逆时针各偏转45°的方位布置传感器。...

1.程序功能描述
基于模糊神经网络的移动机器人路径规划

1.环境地图中的障碍物为静态、未知障碍物,可以随机设置。(一般设置5~7个,为计算简便设置成规则性状的障碍物)

2.机器人的行进方向为X轴的正方向,X轴逆时针旋转90°即为Y轴。两驱动轮之间的距离为50cm,驱动轮的直径为30cm。机器人的最大运动速度设为0.8m/s

3.为简化计算,在机器人的正前方及沿顺、逆时针各偏转45°的方位布置传感器。

机器人模型如图所示

1.png

4.控制系统的输入为机器人正前方障碍物的距离df、左前方障碍物的距离dl、右前方障碍物的距离dr、机器人运动方向与目标方向之间的夹角(航向角)α,输出为机器人左、右轮的速度vl、vr(或者为机器人的速度v和转向角增量Δθ,其中转向角θ为世界坐标系与机器人坐标系X轴之间的夹角)。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

2.jpeg

3.jpeg

4.jpeg

5.jpeg

3.核心程序

       for kk = 1:N
       for m=1:Ns
           xs(:,m) = [x(1,time-1) + Sense_radius*cos(Jd(m,1)); 
                      x(2,time-1) + Sense_radius*sin(Jd(m,1))];
           G1(m,1) = func_obstacle(xs(:,m),xobstacle,yobstacle);
           G2(m,1) = func_goal(xs(:,m),Pend); 
           G3(m,1) = G1(m,1) + G2(m,1);
       end
       [val,bestone]=min(G3);
       %如果某个方向有多个障碍物,那么选择最近的那个
       %如果某个方向的距离集合为空集合,那么说明这个方向的障碍物为无穷远,直接赋值一个较大值
       dr_in = min(dr);
       if isempty(dr) == 1
          dr_in = 1e20; 
       end
       d_in  = min(d);
       if isempty(d) == 1
          d_in  = 1e20; 
       end
       dl_in = min(dl);
       if isempty(dl) == 1
          dl_in = 1e20; 
       end
 
       %代入到模糊神经网络的四个变量
       %调用模糊神经网络的模型
       [v_fnn,Theta_fnn]=func_fnn_test(dr_in,d_in,dl_in,alpha);
       DELTA_Theta = Theta_fnn;
       V           = v_fnn;
       x(:,time) =[x(1,time-1)+lambda*cos(Jd(bestone,1)); 
                   x(2,time-1)+lambda*sin(Jd(bestone,1))];
	   Deltalambda = V;
	   Deltatheta  = DELTA_Theta;
	   x(:,time)   =[x(1,time)+Deltalambda*cos(Jd(bestone,1)+Deltatheta); 
	                 x(2,time)+Deltalambda*sin(Jd(bestone,1)+Deltatheta)];   
 
       %更新坐标
       Xs(time)    = x(1,time);
       Ys(time)    = x(2,time);   
       Tes         = [Tes,Jd(bestone,1)+Deltatheta];
       Vs          = [Vs,Deltalambda];       
    end
 
    %画图
    plot(x(1,time),x(2,time),'r.')
    hold on
    drawnow;   
    if sqrt((Xs(time)-X_end)^2+(Ys(time)-Y_end)^2)<0.2
       break;
    end
end
 
 
figure;
subplot(211);
plot(Tes);
grid on
xlabel('times');
ylabel('theta')
 
subplot(212);
plot(Vs);
grid on
xlabel('times');
ylabel('speed')
 
06_017m

4.本算法原理
4.1 移动机器人路径规划问题概述
        在移动机器人领域,路径规划是一个核心任务,目标是在未知或已知环境中为机器人寻找一条从起始点到目标点的安全、有效且满足特定约束条件(如避障、最短距离等)的路径。数学上,通常将环境表示为一个离散或者连续的空间,并通过图论中的搜索算法来解决。

4.2 模糊系统与模糊逻辑
       控制系统的输出为机器人左、右轮的速度vl、vr(或者为机器人的速度v和转向角增量Δθ,其中转向角θ为世界坐标系与机器人坐标系X轴之间的夹角)。

df、dl、dr的模糊集合为{Nr,Ml,Fr} Nr-近  Ml-中  Fr-远

α的模糊集合为{NB,NS,Z,PS,PB}  NB-负大  NS-负小  Z-零  PS-正小  PB-正大

(当目标点位于机器人的右侧时航向角为α正,反之为负)

vl、vr、v的模糊集合为{Sw,Md,Ft}  Sw-慢速  Md-中速  Ft-快速

Δθ的模糊集合为{ NS,Z,PS } NS-负小  Z-零  PS-正小

整个模糊神经网络的基本结构如下图所示:

6.png

由于左右两个传感器正好在45度方向,所以在实际工作的时候,

7.jpg

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。