【Elasticsearch系列十七】索引 index
1.索引管理
直接 put 数据
PUT index/_doc/1
es 会自动生成索引,并建立动态映射 dynamic mapping
在生产上,我们需要自己手动建立索引和映射,为了更好地管理索引。就像数据库的建表语句一样。
创建索引:
创建索引的语法
PUT /index
{
"settings": { ... any settings ... },
"mappings": {
"properties" : {
"field1" : { "type" : "text" }
}
},
"aliases": {
"default_index": {}
}
}
举例:
PUT /my_index
{
"settings": {
"number_of_shards": 1,
"number_of_replicas": 1
},
"mappings": {
"properties": {
"field1":{
"type": "text"
},
"field2":{
"type": "text"
}
}
},
"aliases": {
"default_index": {}
}
}
索引别名
插入数据
POST /my_index/_doc/1
{
"field1":"java",
"field2":"js"
}
查询数据 都可以查到
GET /my_index/_doc/1
GET /default_index/_doc/1
查询索引:
GET /my_index/_mapping
GET /my_index/_setting
修改索引:
修改副本数
PUT /my_index/_settings
{
"index" : {
"number_of_replicas" : 2
}
}
删除索引:
DELETE /my_index
DELETE /index_one,index_two
DELETE /index_*
DELETE /_all
为了安全起见,防止恶意删除索引,删除时必须指定索引名:
#elasticsearch.yml文件中
action.destructive_requires_name: true
2.默认的分词器
standard 是默认的分词器
分词器有三个组件:
- character filter
- tokenizer
- filter
分词器功能:
-
standard tokenizer:以单词边界进行切分
-
standard token filter:什么都不做
-
lowercase token filter:将所有字母转换为小写
-
stop token filer(默认被禁用):移除停用词,比如 a the it 等等
3.修改分词器
启用 english 停用词 token filter
PUT /my_index
{
"settings": {
"analysis": {
"analyzer": {
"es_std": {
"type": "standard",
"stopwords": "_english_"
}
}
}
}
}
测试分词
GET /my_index/_analyze
{
"analyzer": "standard",
"text": "a dog is in the house"
}
GET /my_index/_analyze
{
"analyzer": "es_std",
"text":"a dog is in the house"
}
4.定制化自己的分词器
PUT /my_index
{
"settings": {
"analysis": {
"char_filter": {
"&_to_and": {
"type": "mapping",
"mappings": ["&=> and"]
}
},
"filter": {
"my_stopwords": {
"type": "stop",
"stopwords": ["the", "a"]
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"char_filter": ["html_strip", "&_to_and"],
"tokenizer": "standard",
"filter": ["lowercase", "my_stopwords"]
}
}
}
}
}
测试
GET /my_index/_analyze
{
"analyzer": "my_analyzer",
"text": "tom&jerry are a friend in the house, <a>, HAHA!!"
}
设置字段使用自定义分词器
PUT /my_index/_mapping/
{
"properties": {
"content": {
"type": "text",
"analyzer": "my_analyzer"
}
}
}
5.type 底层结构及弃用原因
type,是一个 index 中用来区分类似的数据的,类似的数据,但是可能有不同的 fields,而且有不同的属性来控制索引建立、分词器 field 的 value,在底层的 lucene 中建立索引的时候,全部是 opaque bytes 类型,不区分类型的。
lucene 是没有 type 的概念的,在 document 中,实际上将 type 作为一个 document 的 field 来存储,即_type,es 通过_type 来进行 type 的过滤和筛选。
es 中不同 type 存储机制:
一个 index 中的多个 type,实际上是放在一起存储的,因此一个 index 下,不能有多个 type 重名,而类型或者其他设置不同的,因为那样是无法处理的
{
"goods": {
"mappings": {
"electronic_goods": {
"properties": {
"name": {
"type": "string"
},
"price": {
"type": "double"
},
"service_period": {
"type": "string"
}
}
},
"fresh_goods": {
"properties": {
"name": {
"type": "string"
},
"price": {
"type": "double"
},
"eat_period": {
"type": "string"
}
}
}
}
}
}
PUT /goods/electronic_goods/1
{
"name": "小米空调",
"price": 1999.0,
"service_period": "one year"
}
PUT /goods/fresh_goods/1
{
"name": "澳洲龙虾",
"price": 199.0,
"eat_period": "one week"
}
es 文档在底层的存储是这样子的
{
"goods": {
"mappings": {
"_type": {
"type": "string",
"index": "false"
},
"name": {
"type": "string"
}
"price": {
"type": "double"
}
"service_period": {
"type": "string"
},
"eat_period": {
"type": "string"
}
}
}
}
底层数据存储格式
{
"_type": "electronic_goods",
"name": "小米空调",
"price": 1999.0,
"service_period": "one year",
"eat_period": ""
}
{
"_type": "fresh_goods",
"name": "澳洲龙虾",
"price": 199.0,
"service_period": "",
"eat_period": "one week"
}
type 弃用:
同一索引下,不同 type 的数据存储其他 type 的 field 大量空值,造成资源浪费。
所以,不同类型数据,要放到不同的索引中。es9 中,将会彻底删除 type。
6.定制 dynamic mapping
dynamic属性值介绍:
-
true:遇到陌生字段,就进行 dynamic mapping
-
false:新检测到的字段将被忽略。这些字段将不会被索引,因此将无法搜索,但仍将出现在返回点击的源字段中。这些字段不会添加到映射中,必须显式添加新字段。
-
strict:遇到陌生字段,就报错
创建 mapping
PUT /my_index
{
"mappings": {
"dynamic": "strict",
"properties": {
"title": {
"type": "text"
},
"address": {
"type": "object",
"dynamic": "true"
}
}
}
}
插入数据
PUT /my_index/_doc/1
{
"title": "my article",
"content": "this is my article",
"address": {
"province": "guangdong",
"city": "guangzhou"
}
}
报错
{
"error": {
"root_cause": [
{
"type": "strict_dynamic_mapping_exception",
"reason": "mapping set to strict, dynamic introduction of [content] within [_doc] is not allowed"
}
],
"type": "strict_dynamic_mapping_exception",
"reason": "mapping set to strict, dynamic introduction of [content] within [_doc] is not allowed"
},
"status": 400
}
自定义dynamic mapping策略:
es 会根据传入的值,推断类型。
date_detection日期探测:
默认会按照一定格式识别 date,比如 yyyy-MM-dd。但是如果某个 field 先过来一个 2017-01-01 的值,就会被自动 dynamic mapping 成 date,后面如果再来一个"hello world"之类的值,就会报错。可以手动关闭某个 type 的 date_detection,如果有需要,自己手动指定某个 field 为 date 类型。
PUT /my_index
{
"mappings": {
"date_detection": false,
"properties": {
"title": {
"type": "text"
},
"address": {
"type": "object",
"dynamic": "true"
}
}
}
}
测试:
PUT /my_index/_doc/1
{
"title": "my article",
"content": "this is my article",
"address": {
"province": "guangdong",
"city": "guangzhou"
},
"post_date":"2019-09-10"
}
查看映射:
GET /my_index/_mapping
自定义日期格式:
PUT my_index
{
"mappings": {
"dynamic_date_formats": ["MM/dd/yyyy"]
}
}
插入数据:
PUT my_index/_doc/1
{
"create_date": "09/25/2019"
}
numeric_detection 数字探测:
虽然 json 支持本机浮点和整数数据类型,但某些应用程序或语言有时可能将数字呈现为字符串。通常正确的解决方案是显式地映射这些字段,但是可以启用数字检测(默认情况下禁用)来自动完成这些操作。
PUT my_index
{
"mappings": {
"numeric_detection": true
}
}
PUT my_index/_doc/1
{
"my_float": "1.0",
"my_integer": "1"
}
7.dynamic mapping 模版
PUT /my_index
{
"mappings": {
"dynamic_templates": [
{
"en": {
"match": "*_en",
"match_mapping_type": "string",
"mapping": {
"type": "text",
"analyzer": "english"
}
}
}
]
}
}
插入数据
PUT /my_index/_doc/1
{
"title": "this is my first article"
}
PUT /my_index/_doc/2
{
"title_en": "this is my first article"
}
搜索
GET my_index/_search?q=first
GET my_index/_search?q=is
测试结果说明:
title 没有匹配到任何的 dynamic 模板,默认就是 standard 分词器,不会过滤停用词,is 会进入倒排索引,用 is 来搜索是可以搜索到的
title_en 匹配到了 dynamic 模板,就是 english 分词器,会过滤停用词,is 这种停用词就会被过滤掉,用 is 来搜索就搜索不到了
模板写法:
PUT my_index
{
"mappings": {
"dynamic_templates": [
{
"integers": {
"match_mapping_type": "long",
"mapping": {
"type": "integer"
}
}
},
{
"strings": {
"match_mapping_type": "string",
"mapping": {
"type": "text",
"fields": {
"raw": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
]
}
}
8.特殊 mapping 设置
结构化搜索:
默认情况下,elasticsearch 将字符串字段映射为带有子关键字字段的文本字段。但是,如果只对结构化内容进行索引,而对全文搜索不感兴趣,则可以仅将“字段”映射为“关键字”。请注意,这意味着为了搜索这些字段,必须搜索索引所用的完全相同的值。
{
"strings_as_keywords": {
"match_mapping_type": "string",
"mapping": {
"type": "keyword"
}
}
}
仅搜索:
与前面的示例相反,如果您只关心字符串字段的全文搜索,并且不打算对字符串字段运行聚合、排序或精确搜索,您可以告诉弹性搜索将其仅映射为文本字段
{
"strings_as_text": {
"match_mapping_type": "string",
"mapping": {
"type": "text"
}
}
}
norms 不关心评分:
norms 是指标时间的评分因素。如果您不关心评分,例如,如果您从不按评分对文档进行排序,则可以在索引中禁用这些评分因子的存储并节省一些空间。
{
"strings_as_keywords": {
"match_mapping_type": "string",
"mapping": {
"type": "text",
"norms": false,
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
}
}
}
9.零停机重建索引
场景:
一个 field 的设置是不能被修改的,如果要修改一个 Field,那么应该重新按照新的 mapping,建立一个 index,然后将数据批量查询出来,重新用 bulk api 写入 index 中。
批量查询的时候,建议采用 scroll api,并且采用多线程并发的方式来 reindex 数据,每次 scoll 就查询指定日期的一段数据,交给一个线程即可。
示例:
一开始,依靠 dynamic mapping,插入数据,但是不小心有些数据是 2019-09-10 这种日期格式的,所以 title 这种 field 被自动映射为了 date 类型,实际上它应该是 string 类型的
PUT /my_index/_doc/1
{
"title": "2019-09-10"
}
PUT /my_index/_doc/2
{
"title": "2019-09-11"
}
当后期向索引中加入 string 类型的 title 值的时候,就会报错
PUT /my_index/_doc/3
{
"title": "my first article"
}
报错
{
"error": {
"root_cause": [
{
"type": "mapper_parsing_exception",
"reason": "failed to parse [title]"
}
],
"type": "mapper_parsing_exception",
"reason": "failed to parse [title]",
"caused_by": {
"type": "illegal_argument_exception",
"reason": "Invalid format: \"my first article\""
}
},
"status": 400
}
如果此时想修改 title 的类型,是不可能的
PUT /my_index/_mapping
{
"properties": {
"title": {
"type": "text"
}
}
}
报错
{
"error": {
"root_cause": [
{
"type": "illegal_argument_exception",
"reason": "mapper [title] of different type, current_type [date], merged_type [text]"
}
],
"type": "illegal_argument_exception",
"reason": "mapper [title] of different type, current_type [date], merged_type [text]"
},
"status": 400
}
此时,唯一的办法,就是进行 reindex,也就是说,重新建立一个索引,将旧索引的数据查询出来,再导入新索引。
如果说旧索引的名字,是 old_index,新索引的名字是 new_index,终端 java 应用,已经在使用 old_index 在操作了,难道还要去停止 java 应用,修改使用的 index 为 new_index,才重新启动 java 应用吗?这个过程中,就会导致 java 应用停机,可用性降低。
所以说,给 java 应用一个别名,这个别名是指向旧索引的,java 应用先用着,java 应用先用 prod_index alias 来操作,此时实际指向的是旧的 my_index
PUT /my_index/_alias/prod_index
新建一个 index,调整其 title 的类型为 string
PUT /my_index_new
{
"mappings": {
"properties": {
"title": {
"type": "text"
}
}
}
}
使用 scroll api 将数据批量查询出来
GET /my_index/_search?scroll=1m
{
"query": {
"match_all": {}
},
"size": 1
}
返回
{
"_scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAADpAFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAA6QRY0b25zVFlWWlRqR3ZJajlfc3BXejJ3AAAAAAAAOkIWNG9uc1RZVlpUakd2SWo5X3NwV3oydwAAAAAAADpDFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAA6RBY0b25zVFlWWlRqR3ZJajlfc3BXejJ3",
"took": 1,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 3,
"max_score": null,
"hits": [
{
"_index": "my_index",
"_type": "my_type",
"_id": "1",
"_score": null,
"_source": {
"title": "2019-01-02"
},
"sort": [0]
}
]
}
}
采用 bulk api 将 scoll 查出来的一批数据,批量写入新索引
POST /_bulk
{ "index": { "_index": "my_index_new", "_id": "1" }}
{ "title": "2019-09-10" }
反复循环 8~9,查询一批又一批的数据出来,采取 bulk api 将每一批数据批量写入新索引
将 prod_index alias 切换到 my_index_new 上去,java 应用会直接通过 index 别名使用新的索引中的数据,java 应用程序不需要停机,零提交,高可用
POST /_aliases
{
"actions": [
{ "remove": { "index": "my_index", "alias": "prod_index" }},
{ "add": { "index": "my_index_new", "alias": "prod_index" }}
]
}
直接通过 prod_index 别名来查询
GET /prod_index/_search
Elasticsearch 的使用场景包括:
- 应用搜索:为网站或应用程序提供搜索功能,如电商、社交媒体等。
- 日志记录和日志分析:收集、存储和分析服务器日志、应用日志等。
- 基础设施监控:监控服务器、网络设备等基础设施的性能指标。
- 安全分析:分析安全日志,进行入侵检测和威胁分析。
- 地理位置数据分析:处理地理空间数据,提供地理位置搜索服务。
- 商业智能:对商业数据进行分析,提供决策支持。
Elasticsearch 的引入主要是为了应对大数据环境下的海量数据检索和实时分析需求,它通过分布式架构和高效的索引机制,提供了快速的搜索和分析能力。然而,Elasticsearch 也存在一些潜在风险,如响应时间问题和任务恢复延迟等,需要通过优化配置和维护来降低这些风险的影响。
- 点赞
- 收藏
- 关注作者
评论(0)