加拿大卫星森林资源调查 (SBFI)森林覆盖、干扰恢复、结构、物种、林分年龄以及 1985-2020 年林分替代干扰的信息

举报
此星光明 发表于 2024/09/03 12:03:17 2024/09/03
【摘要】 ​ 加拿大卫星森林资源调查 (SBFI)简介卫星森林资源清查(SBFI)提供了 2020 年加拿大森林覆盖、干扰恢复、结构、物种、林分年龄以及 1985-2020 年林分替代干扰的信息。 SBFI 多边形代表了与战略森林资源清查中划定的林分相似的同质森林状况。 使用多分辨率分割算法对 2020 年大地遥感卫星表面反射 BAP 复合影像(30 米空间分辨率)、火灾年份和采伐年份图层进行了划分,...

 加拿大卫星森林资源调查 (SBFI)

简介

卫星森林资源清查(SBFI)提供了 2020 年加拿大森林覆盖、干扰恢复、结构、物种、林分年龄以及 1985-2020 年林分替代干扰的信息。 SBFI 多边形代表了与战略森林资源清查中划定的林分相似的同质森林状况。 使用多分辨率分割算法对 2020 年大地遥感卫星表面反射 BAP 复合影像(30 米空间分辨率)、火灾年份和采伐年份图层进行了划分,这些图层是使用 C2C 方法从大地遥感卫星上获取的。 最小地图单位为 0.45 公顷(5 像素),用于定义多边形。 整个加拿大的森林生态系统都使用相同的数据、属性和时间表示方法进行测绘,从而形成了加拿大约 6.5 亿公顷森林生态系统的通用植被清查系统。 鉴于加拿大森林面积大且种类繁多,SBFI 的优势在于使用一致的数据源和方法,跨越管辖边界、管理和非管理林区,从而能够一致地生成综合、空间明确的信息输出。 此处包含的数据基于免费开放的卫星数据和信息产品,并遵循既定的交流方法。

数据集后处理

为便于使用,瓦片数据集被合并为一个单一的特征集合。 网格文件保留原样,以便用户了解网格是如何创建的。

数据下载链接

https://opendata.nfis.org/downloads/forest_change/CA_Forest_Satellite_Based_Inventory_2020.zip

矢量属性

Group Field Description Units
ID ID Unique polygon identifier
TILE Tile identifier
Geometry AREA_HA Area of the polygon ha
PERIMETER_M Length of polygon’s boundary m
Stratification JURSDICTION Most represented province/territory
ECOZONE Most represented terrestrial ecozone as defined by Ecological Stratification Working Group (1996)
ECOPROVINCE Most represented ecoprovince as defined by Ecological Stratification Working Group (1996)
ECOREGION Most represented ecoregion as defined by Ecological Stratification Working Group (1996)
MANAGEMENT Most represented land status from the forest management classification from Stinson et al_ (2019)
Land cover LC_WATER Area covered by water % of polygon area
LC_SNOW_ICE Area covered by snow/ice % of polygon area
LC_ROCK_RUBBLE Area covered by rock/rubble % of polygon area
LC_EXPOSED_BARREN Area covered by exposed/barren land % of polygon area
LC_BRYOIDS Area covered by bryoids % of polygon area
LC_SHRUBS Area covered by shrubs % of polygon area
LC_WETLAND Area covered by wetland % of polygon area
LC_WETLAND-TREED Area covered by wetland-treed % of polygon area
LC_HERBS Area covered by herbs % of polygon area
LC_CONIFEROUS Area covered by coniferous % of polygon area
LC_BROADLEAF Area covered by broadleaf % of polygon area
LC_MIXEDWOOD Area covered by mixedwood % of polygon area
LC_TREED Area covered by treed vegetation derived from combining the land cover classes % of polygon area
LC_FAO_FOREST Area covered by forest consistent with FAO definitions (Wulder et al_ 2020) % of polygon area
LC_WETLAND_VEGETATION Area covered by wetlands derived from combining the land cover classes % of polygon area
Disturbances DISTURB_FIRE_PERC Area impacted by fire disturbances % of polygon area
DISTURB_FIRE_YEAR Modal year of fire disturbances years
DISTURB_FIRE_MAGNITUDE_MIN Minimum value of fire magnitude dNBR
DISTURB_FIRE_MAGNITUDE_MAX Maximum value of fire magnitude dNBR
DISTURB_FIRE_MAGNITUDE_AVG Average value of fire magnitude dNBR
DISTURB_FIRE_MAGNITUDE_SD Standard deviation of fire magnitude dNBR
DISTURB_FIRE_MAGNITUDE_MED Median value of fire magnitude dNBR
DISTURB_HARVEST_PERC Area impacted by harvesting disturbances % of polygon area
DISTURB_HARVEST_YEAR Modal year of harvesting disturbances years
Recovery RECOVERY_FIRE_MIN Minimum value of spectral recovery for fire disturbances % of pre-disturbance
RECOVERY_FIRE_MAX Maximum value of spectral recovery for fire disturbances % of pre-disturbance
RECOVERY_FIRE_AVG Average value of spectral recovery for fire disturbances % of pre-disturbance
RECOVERY_FIRE_SD Standard deviation of spectral recovery for fire disturbances % of pre-disturbance
RECOVERY_FIRE_MED Median value of spectral recovery for fire disturbances % of pre-disturbance
RECOVERY_HARVEST_MIN Minimum value of spectral recovery for harvesting disturbances % of pre-disturbance
RECOVERY_HARVEST_MAX Maximum value of spectral recovery for harvesting disturbances % of pre-disturbance
RECOVERY_HARVEST_AVG Average value of spectral recovery for harvesting disturbances % of pre-disturbance
RECOVERY_HARVEST_SD Standard deviation of spectral recovery for harvesting disturbances % of pre-disturbance
RECOVERY_HARVEST_MED Median value of spectral recovery for harvesting disturbances % of pre-disturbance
Age AGE_MIN Minimum forest age years
AGE_MAX Maximum forest age years
AGE_AVG Average forest age years
AGE_SD Standard deviation of forest age years
AGE_MED Median forest age years
AGE_0_10, AGE_10_20, AGE_20_30, AGE_30_40, AGE_40_50, AGE_50_60, AGE_60_70, AGE_70_80, AGE_80_90, AGE_90_100, AGE_100_110, AGE_110_120, AGE_120_130, AGE_130_140, AGE_140_150, AGE_GT_150 Ten-year age class frequency distribution % of treed area in polygon
Forest structure STRUCTURE_CANOPY_HEIGHT_MIN Minimum canopy height m
STRUCTURE_CANOPY_HEIGHT_MAX Maximum canopy height m
STRUCTURE_CANOPY_HEIGHT_AVG Average canopy height m
STRUCTURE_CANOPY_HEIGHT_SD Standard deviation of canopy height m
STRUCTURE_CANOPY_HEIGHT_MED Median canopy height m
STRUCTURE_CANOPY_COVER_MIN Minimum canopy cover %
STRUCTURE_CANOPY_COVER_MAX Maximum canopy cover %
STRUCTURE_CANOPY_COVER_AVG Average canopy cover %
STRUCTURE_CANOPY_COVER_SD Standard deviation of canopy cover %
STRUCTURE_CANOPY_COVER_MED Median canopy cover %
STRUCTURE_LOREYS_HEIGHT_MIN Minimum Lorey’s height m
STRUCTURE_LOREYS_HEIGHT_MAX Maximum Lorey’s height m
STRUCTURE_LOREYS_HEIGHT_AVG Average Lorey’s height m
STRUCTURE_LOREYS_HEIGHT_SD Standard deviation of Lorey’s height m
STRUCTURE_LOREYS_HEIGHT_MED Median Lorey’s height m
STRUCTURE_BASAL_AREA_MIN Minimum basal area m2 ha−1
STRUCTURE_BASAL_AREA_MAX Maximum basal area m2 ha−1
STRUCTURE_BASAL_AREA_AVG Average basal area m2 ha−1
STRUCTURE_BASAL_AREA_SD Standard deviation of basal area m2 ha−1
STRUCTURE_BASAL_AREA_MED Median basal area m2 ha−1
STRUCTURE_BASAL_AREA_TOTAL Total basal area in polygon m2
STRUCTURE_AGB_MIN Minimum aboveground biomass t ha−1
STRUCTURE_AGB_MAX Maximum aboveground biomass t ha−1
STRUCTURE_AGB_AVG Average aboveground biomass t ha−1
STRUCTURE_AGB_SD Standard deviation of aboveground biomass t ha−1
STRUCTURE_AGB_MED Median aboveground biomass t ha−1
STRUCTURE_AGB_TOTAL Total aboveground biomass in polygon t
STRUCTURE_VOLUME_MIN Minimum gross stem volume m3 ha−1
STRUCTURE_VOLUME_MAX Maximum gross stem volume m3 ha−1
STRUCTURE_VOLUME_AVG Average gross stem volume m3 ha−1
STRUCTURE_VOLUME_SD Standard deviation of gross stem volume m3 ha−1
STRUCTURE_VOLUME_MED Median gross stem volume m3 ha−1
STRUCTURE_VOLUME_TOTAL Total gross stem volume in polygon m3
Tree species SPECIES_NUMBER
SPECIES_1 Name of the 1st most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_2 Name of the 2nd most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_3 Name of the 3rd most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_4 Name of the 4th most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_5 Name of the 5th most common leading tree species representing a percentage of treed area in polygon >2_5%
SPECIES_1_PERC Area covered by the 1st most common leading tree species % of treed area in polygon
SPECIES_2_PERC Area covered by the 2nd most common leading tree species % of treed area in polygon
SPECIES_3_PERC Area covered by the 3rd most common leading tree species % of treed area in polygon
SPECIES_5_PERC Area covered by the 5th most common leading tree species % of treed area in polygon
SPECIES_CONIFEROUS_PERC Area covered by coniferous tree species % of treed area in polygon
SPECIES_CML1 Name of the 1st most common tree species based on the class membership likelihood values
SPECIES_CML2 Name of the 2nd most common tree species based on the class membership likelihood values
SPECIES_CML3 Name of the 3rd most common tree species based on the class membership likelihood values
SPECIES_CML4 Name of the 4th most common tree species based on the class membership likelihood values
SPECIES_CML5 Name of the 5th most common tree species based on the class membership likelihood values
SPECIES_CML1_PERC Distribution of the class membership likelihood values of the 1st most common tree species % of class membership likelihood from treed pixels in polygon
SPECIES_CML2_PERC Distribution of the class membership likelihood values of the 2nd most common tree species % of class membership likelihood from treed pixels in polygon
SPECIES_CML3_PERC Distribution of the class membership likelihood values of the 3rd most common tree species % of class membership likelihood from treed pixels in polygon
SPECIES_CML4_PERC Distribution of the class membership likelihood values of the 4th most common tree species % of class membership likelihood from treed pixels in polygon
SPECIES_CML5_PERC Distribution of the class membership likelihood values of the 5th most common tree species % of class membership likelihood from treed pixels in polygon
SPECIES_CML_CONIFEROUS_PERC Proportion of class membership likelihood values of coniferous tree species % of class membership likelihood from treed pixels in polygon
SPECIES_CML_ASSEMBLAGES Name of the tree species conforming an assemblage
SPECIES_CML_ASSEMBLAGES_PERC Proportion of class membership likelihood values conforming the assemblage % of class membership likelihood from treed pixels in polygon
Symbology SYMB_LAND_BASE_LEVEL Land base level classification based on the NFI land cover hierarchy (Wulder et al_ 2008)
SYMB_LAND_COVER_LEVEL Land cover level classification based on the NFI land cover hierarchy (Wulder et al_ 2008)
SYMB_VEGETATION_LEVEL Vegetation level classification based on the NFI land cover hierarchy (Wulder et al_ 2008)
SYMB_DISTURBANCE Simplified coding for disturbance type and year
SYMB_RECOVERY Simplified coding for spectral recovery
SYMB_AGE Simplified coding for forest age

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ABoVE_ASCENDS_XCO2_2050",
    cloud_hosted=True,
    bounding_box=(-165.68, 34.59, -98.1, 71.28),
    temporal=("2017-07-20", "2017-08-08"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:agriculture-vegetation-forestry/CA-SBFI

引用

Wulder, Michael A., Txomin Hermosilla, Joanne C. White, Christopher W. Bater, Geordie Hobart, and Spencer C. Bronson. "Development and
implementation of a stand-level satellite-based forest inventory for Canada." Forestry: An International Journal of Forest Research (2024): cpad065.

Wulder, M.A., Hermosilla, T., White, J.C., Bater, C.W., Hobart, G., Bronson, S.C., 2024. Development and implementation of a stand-level
satellite-based forest inventory for Canada. Forestry: An International Journal of Forest Research. https://doi.org/10.1093/forestry/cpad065

许可

本作品采用加拿大开放式政府许可协议(Open Government Licence - Canada)进行许可,并向公众免费开放。 创作者:Wulder et al: Wulder et al. 2024 在 GEE 中策划: : Samapriya Roy 主要作品: 大地遥感卫星、土地覆盖、变化探测、森林结构、生物量;NFI 在 GEE 中的最新更新时间: 2024-08-29 

网址推荐

0代码在线构建地图应用

https://www.mapmost.com/#/?source_inviter=CnVrwIQs

机器学习

https://www.cbedai.net/xg 


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。