【全网独家】基于Matlab的Consensus-Based Bundle Algorithm (CBBA)算法

举报
鱼弦 发表于 2024/08/17 09:25:37 2024/08/17
【摘要】 基于Matlab的Consensus-Based Bundle Algorithm (CBBA)算法 介绍Consensus-Based Bundle Algorithm (CBBA)是一种分布式任务分配和路径规划算法,适用于多机器人系统或无人机群。CBBA通过各个代理(robots/drones)间的信息共享,实现全局最优或次优的任务分配。每个代理根据自己的任务价值评估,独立地进行任务选...

基于Matlab的Consensus-Based Bundle Algorithm (CBBA)算法

介绍

Consensus-Based Bundle Algorithm (CBBA)是一种分布式任务分配和路径规划算法,适用于多机器人系统或无人机群。CBBA通过各个代理(robots/drones)间的信息共享,实现全局最优或次优的任务分配。每个代理根据自己的任务价值评估,独立地进行任务选择,同时通过共识机制调整和更新任务分配以优化整体性能。

应用使用场景

CBBA广泛应用于以下场景:

  1. 无人机编队的任务分配与路径规划。
  2. 多机器人系统中的协作任务执行。
  3. 军事中的自动化侦察和监视任务。
  4. 救灾任务中的搜索与救援行动。

实现无人机编队的任务分配和路径规划,以及多机器人系统中的协作任务执行、军事中的自动化侦察和监视任务、救灾任务中的搜索与救援行动等代码示例需要综合使用多个领域的知识,包括ROS(机器人操作系统)、路径规划算法(如A*、Dijkstra)、任务分配方法(如拍卖算法、分布式算法)等。下面是一些示例代码片段,展示如何实现这些功能。

无人机编队的任务分配与路径规划

示例:使用Python编写无人机编队路径规划(假设使用A*算法)

import heapq

def a_star(grid, start, goal):
    def heuristic(a, b):
        return abs(a[0] - b[0]) + abs(a[1] - b[1])

    neighbors = [(0, 1), (0, -1), (1, 0), (-1, 0)]
    close_set = set()
    came_from = {}
    gscore = {start: 0}
    fscore = {start: heuristic(start, goal)}
    oheap = []

    heapq.heappush(oheap, (fscore[start], start))

    while oheap:
        current = heapq.heappop(oheap)[1]

        if current == goal:
            data = []
            while current in came_from:
                data.append(current)
                current = came_from[current]
            return data[::-1]

        close_set.add(current)
        for i, j in neighbors:
            neighbor = current[0] + i, current[1] + j
            tentative_g_score = gscore[current] + heuristic(current, neighbor)

            if 0 <= neighbor[0] < grid.shape[0]:
                if 0 <= neighbor[1] < grid.shape[1]:
                    if grid[neighbor[0]][neighbor[1]] == 1:
                        continue
                else:
                    continue
            else:
                continue

            if neighbor in close_set and tentative_g_score >= gscore.get(neighbor, 0):
                continue

            if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in [i[1] for i in oheap]:
                came_from[neighbor] = current
                gscore[neighbor] = tentative_g_score
                fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)
                heapq.heappush(oheap, (fscore[neighbor], neighbor))

    return False

# Example usage
import numpy as np
grid = np.array([
    [0, 0, 0, 0, 0],
    [0, 1, 1, 1, 0],
    [0, 1, 0, 0, 0],
    [0, 0, 0, 1, 0],
    [0, 0, 0, 0, 0],
])
start = (0, 0)
goal = (4, 4)
path = a_star(grid, start, goal)
print("Path found:", path)

多机器人系统中的协作任务执行

示例:使用ROS进行多机器人协作任务分配

# Ensure you have ROS installed and sourced
# File: multi_robot_cooperation.py

import rospy
from std_msgs.msg import String
import random

robot_ids = ["robot_1", "robot_2", "robot_3"]
tasks = ["task_A", "task_B", "task_C"]

def task_allocation():
    allocations = {}
    for robot in robot_ids:
        allocated_task = random.choice(tasks)
        tasks.remove(allocated_task)
        allocations[robot] = allocated_task
    return allocations

def publish_tasks():
    pub = rospy.Publisher('task_allocation', String, queue_size=10)
    rospy.init_node('task_allocator', anonymous=True)
    while not rospy.is_shutdown():
        allocations = task_allocation()
        allocation_str = str(allocations)
        rospy.loginfo(allocation_str)
        pub.publish(allocation_str)
        rospy.sleep(5)

if __name__ == '__main__':
    try:
        publish_tasks()
    except rospy.ROSInterruptException:
        pass

军事中的自动化侦察和监视任务

示例:自动化侦察任务(假设使用OpenCV进行目标检测)

import cv2

# Load pre-trained model and video source
model = cv2.dnn.readNetFromCaffe('deploy.prototxt', 'res10_300x300_ssd_iter_140000.caffemodel')
cap = cv2.VideoCapture('mission_video.mp4')

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    h, w = frame.shape[:2]
    blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0))
    model.setInput(blob)
    detections = model.forward()

    for i in range(detections.shape[2]):
        confidence = detections[0, 0, i, 2]
        if confidence > 0.5:
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")
            text = "{:.2f}%".format(confidence * 100)
            y = startY - 10 if startY - 10 > 10 else startY + 10
            cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 255, 0), 2)
            cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 255, 0), 2)

    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF
    if key == ord("q"):
        break

cap.release()
cv2.destroyAllWindows()

救灾任务中的搜索与救援行动

示例:基于DFS算法的搜索与救援模拟

def dfs_search(grid, start):
    stack = [start]
    visited = set()
    path = []

    while stack:
        position = stack.pop()
        if position in visited:
            continue
        visited.add(position)
        path.append(position)

        x, y = position
        for dx, dy in [(-1, 0), (1, 0), (0, -1), (0, 1)]:
            next_pos = (x + dx, y + dy)
            if 0 <= next_pos[0] < len(grid) and 0 <= next_pos[1] < len(grid[0]) and grid[next_pos[0]][next_pos[1]] == 0:
                stack.append(next_pos)

    return path

# Example usage
grid = [
    [0, 1, 0, 0, 0],
    [0, 1, 0, 1, 0],
    [0, 0, 0, 1, 0],
    [0, 1, 1, 1, 0],
    [0, 0, 0, 0, 0],
]
start = (0, 0)
path = dfs_search(grid, start)
print("Rescue path:", path)

这些示例代码覆盖了无人机编队任务分配与路径规划、多机器人系统中的协作任务执行、军事中的自动化侦察和监视任务、以及救灾任务中的搜索与救援行动。每个示例都能根据具体需求进行进一步扩展和调整。

原理解释

CBBA的核心思想是将复杂的全局任务分配问题分解为多个简单的局部决策,通过代理间的信息交换和共识机制逐步优化全局任务分配。CBBA通过以下步骤工作:

  1. 任务价值计算:每个代理根据自身状态计算执行每个任务的价值。
  2. 任务选择:每个代理基于价值排序选择一组任务。
  3. 共识阶段:代理间交换任务选择信息,并通过协商达成一致。

算法原理流程图

初始化代理和任务
每个代理计算任务价值
每个代理选择任务并排序
代理间进行信息交换和协商
达成任务分配共识?
结束并执行任务

实际应用代码示例实现

初始化任务和代理

num_agents = 5; % 代理数量
num_tasks = 10; % 任务数量
values = rand(num_agents, num_tasks); % 随机生成任务价值矩阵
assignments = zeros(1, num_tasks); % 初始化任务分配

任务价值计算与选择

for agent_id = 1:num_agents
    [sorted_values, task_order] = sort(values(agent_id,:), 'descend');
    selected_tasks{agent_id} = task_order(1:ceil(num_tasks/num_agents)); % 选择最高价值的前k个任务
end

信息交换与共识

% 简单示例,不涉及复杂的通信模块
for agent_id = 1:num_agents
    for task_id = selected_tasks{agent_id}
        if assignments(task_id) == 0 
            assignments(task_id) = agent_id; % 分配任务
        end
    end
end

% 检查是否达成共识
consensus_reached = true;
for task_id = 1:num_tasks
    if assignments(task_id) == 0
        consensus_reached = false;
        break;
    end
end

完整代码示例

num_agents = 5; % 代理数量
num_tasks = 10; % 任务数量
values = rand(num_agents, num_tasks); % 随机生成任务价值矩阵
assignments = zeros(1, num_tasks); % 初始化任务分配
selected_tasks = cell(1, num_agents);

while true
    for agent_id = 1:num_agents
        [sorted_values, task_order] = sort(values(agent_id,:), 'descend');
        selected_tasks{agent_id} = task_order(1:ceil(num_tasks/num_agents)); % 选择最高价值的前k个任务
    end
    
    for agent_id = 1:num_agents
        for task_id = selected_tasks{agent_id}
            if assignments(task_id) == 0 
                assignments(task_id) = agent_id; % 分配任务
            end
        end
    end

    % 检查是否达成共识
    consensus_reached = true;
    for task_id = 1:num_tasks
        if assignments(task_id) == 0
            consensus_reached = false;
            break;
        end
    end
    
    if consensus_reached
        break;
    end
end

disp(assignments);

测试代码

% 在实际场景中,你需要定义具体的测试函数和数据集来验证算法的性能
function test_cbba()
    num_tests = 10;
    success_count = 0;
    
    for i = 1:num_tests
        result = run_cbba(); % 假设我们已将CBBA封装为run_cbba函数
        if validate_result(result)
            success_count = success_count + 1;
        end
    end
    
    fprintf('成功率: %.2f%%\n', (success_count/num_tests)*100);
end

部署场景

CBBA可部署于以下硬件/软件平台:

  1. 无人机系统:嵌入式处理器上运行Matlab/Simulink模型。
  2. 机器人操作系统(ROS):利用Matlab与ROS的桥接功能实现。
  3. 仿真平台:例如Gazebo、V-REP等模拟环境中进行初步验证。

材料链接

总结

CBBA提供了一种高效且扩展性强的分布式任务分配算法,尤其适用于多智能体系统。通过合理的任务价值评估和信息共享机制,CBBA能够在保证全局性能的同时降低计算复杂度。

未来展望

未来,CBBA可以结合机器学习和深度强化学习技术,进一步提高任务分配的智能化和自适应能力。此外,在动态环境下的实时调度和更广泛的异构系统应用也是值得探索的方向。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。