【机器学习】嘿马机器学习(算法篇)第2篇:K-近邻算法,学习目标【附代码文档】
本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯度下降方法介绍 1 详解梯度下降算法 线性回归 2.6 线性回归api再介绍 小结 线性回归 2.9 正则化线性模型 1 Ridge Regression (岭回归,又名 Tikhonov regularization) 逻辑回归 3.3 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测 1 背景介绍 决策树算法 4.2 决策树分类原理 1 熵 决策树算法 4.3 cart剪枝 1 为什么要剪枝 决策树算法 4.4 特征工程-特征提取 1 特征提取 决策树算法 4.5 决策树算法api 4.6 案例:泰坦尼克号乘客生存预测 集成学习基础 5.1 集成学习算法简介 1 什么是集成学习 2 复习:机器学习的两个核心任务 集成学习基础 5.3 otto案例介绍 -- Otto Group Product Classification Challenge 1.背景介绍 2.数据集介绍 3.评分标准 集成学习基础 5.5 GBDT介绍 1 Decision Tree:CART回归树 1.1 回归树生成算法(复习) 聚类算法 6.1 聚类算法简介 1 认识聚类算法 聚类算法 6.5 算法优化 1 Canopy算法配合初始聚类 聚类算法 6.7 案例:探究用户对物品类别的喜好细分 1 需求 第一章知识补充:再议数据分割 1 留出法 2 交叉验证法 KFold和StratifiedKFold 3 自助法 正规方程的另一种推导方式 1.损失表示方式 2.另一种推导方式 梯度下降法算法比较和进一步优化 1 算法比较 2 梯度下降优化算法 第二章知识补充: 多项式回归 1 多项式回归的一般形式 维灾难 1 什么是维灾难 2 维数灾难与过拟合 第三章补充内容:分类中解决类别不平衡问题 1 类别不平衡数据集基本介绍 向量与矩阵的范数 1.向量的范数 2.矩阵的范数 如何理解无偏估计?无偏估计有什么用? 1.如何理解无偏估计
全套笔记资料代码移步: 前往gitee仓库查看
感兴趣的小伙伴可以自取哦~
全套教程部分目录:
部分文件图片:
K-近邻算法
学习目标
- 掌握K-近邻算法实现过程
- 知道K-近邻算法的距离公式
- 知道K-近邻算法的超参数K值以及取值问题
- 知道kd树实现搜索的过程
- 应用KNeighborsClassifier实现分类
- 知道K-近邻算法的优缺点
- 知道交叉验证实现过程
- 知道超参数搜索过程
- 应用GridSearchCV实现算法参数的调优
1.4 k值的选择
学习目标
-
目标
-
知道KNN中K值大小选择对模型的影响
- 知道估计误差和近似误差
1 K值选择说明
-
举例说明:
图片无法加载
-
K值过小:
-
容易受到异常点的影响
-
k值过大:
- 受到样本均衡的问题
K值选择问题,李航博士的一书「统计学习方法」上所说:
-
1) 选择较小的K值,就相当于用较小的领域中的训练实例进行预测,
-
“学习”近似误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是“学习”的估计误差会增大,
-
换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合;
-
2) 选择较大的K值,就相当于用较大领域中的训练实例进行预测,
-
其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误。
-
且K值的增大就意味着整体的模型变得简单。
-
3) K=N(N为训练样本个数),则完全不足取,
-
因为此时无论输入实例是什么,都只是简单的预测它属于在训练实例中最多的类,模型过于简单,忽略了训练实例中大量有用信息。
-
在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是把训练数据在分成两组:训练集和验证集)来选择最优的K值。
-
近似误差:
-
对现有训练集的训练误差,关注训练集,
- 如果近似误差过小可能会出现过拟合的现象,对现有的训练集能有很好的预测,但是对未知的测试样本将会出现较大偏差的预测。
-
模型本身不是最接近最佳模型。
-
估计误差:
-
可以理解为对测试集的测试误差,关注测试集,
- 估计误差小说明对未知数据的预测能力好,
- 模型本身最接近最佳模型。
2 小结
-
KNN中K值大小选择对模型的影响【知道】
-
K值过小:
- 容易受到异常点的影响
- 容易过拟合
-
k值过大:
- 受到样本均衡的问题
- 容易欠拟合
-
误差
-
近似误差
- 估计误差
K-近邻算法
学习目标
- 掌握K-近邻算法实现过程
- 知道K-近邻算法的距离公式
- 知道K-近邻算法的超参数K值以及取值问题
- 知道kd树实现搜索的过程
- 应用KNeighborsClassifier实现分类
- 知道K-近邻算法的优缺点
- 知道交叉验证实现过程
- 知道超参数搜索过程
- 应用GridSearchCV实现算法参数的调优
1.5 kd树
学习目标
-
目标
-
知道kd树构建和搜索过程
问题导入:
实现k近邻算法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索。
这在特征空间的维数大及训练数据容量大时尤其必要。
k近邻法最简单的实现是线性扫描(穷举搜索),即要计算输入实例与每一个训练实例的距离。计算并存储好以后,再查找K近邻。当训练集很大时,计算非常耗时。
为了提高kNN搜索的效率,可以考虑使用特殊的结构存储训练数据,以减小计算距离的次数。
1 kd树简介
1.1 什么是kd树
根据KNN每次需要预测一个点时,我们都需要计算训练数据集里每个点到这个点的距离,然后选出距离最近的k个点进行投票。当数据集很大时,这个计算成本非常高,针对N个样本,D个特征的数据集,其算法复杂度为O()。
kd树:为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是,如果A和B距离很远,B和C距离很近,那么A和C的距离也很远。有了这个信息,就可以在合适的时候跳过距离远的点。
这样优化后的算法复杂度可降低到O(DNlog(N))。感兴趣的读者可参阅论文:Bentley,J.L.,Communications of the ACM(1975)。
1989年,另外一种称为Ball Tree的算法,在kd Tree的基础上对性能进一步进行了优化。感兴趣的读者可以搜索Five balltree construction algorithms来了解详细的算法信息。
1.2 原理
图片无法加载
黄色的点作为根节点,上面的点归左子树,下面的点归右子树,接下来再不断地划分,分割的那条线叫做分割超平面(splitting hyperplane),在一维中是一个点,二维中是线,三维的是面。
图片无法加载
黄色节点就是Root节点,下一层是红色,再下一层是绿色,再下一层是蓝色。
图片无法加载
1.树的建立;
2.最近邻域搜索(Nearest-Neighbor Lookup)
kd树(K-dimension tree)是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构。kd树是一种二叉树,表示对k维空间的一个划分,构造kd树相当于不断地用垂直于坐标轴的超平面将K维空间切分,构成一系列的K维超矩形区域。kd树的每个结点对应于一个k维超矩形区域。利用kd树可以省去对大部分数据点的搜索,从而减少搜索的计算量。
图片无法加载
类比“二分查找”:给出一组数据:[9 1 4 7 2 5 0 3 8],要查找8。如果挨个查找(线性扫描),那么将会把数据集都遍历一遍。而如果排一下序那数据集就变成了:[0 1 2 3 4 5 6 7 8 9],按前一种方式我们进行了很多没有必要的查找,现在如果我们以5为分界点,那么数据集就被划分为了左右两个“簇” [0 1 2 3 4]和[6 7 8 9]。
因此,根本就没有必要进入第一个簇,可以直接进入第二个簇进行查找。把二分查找中的数据点换成k维数据点,这样的划分就变成了用超平面对k维空间的划分。空间划分就是对数据点进行分类,“挨得近”的数据点就在一个空间里面。
2 构造方法
(1)构造根结点,使根结点对应于K维空间中包含所有实例点的超矩形区域;
(2)通过递归的方法,不断地对k维空间进行切分,生成子结点。在超矩形区域上选择一个坐标轴和在此坐标轴上的一个切分点,确定一个超平面,这个超平面通过选定的切分点并垂直于选定的坐标轴,将当前超矩形区域切分为左右两个子区域(子结点);这时,实例被分到两个子区域。
(3)上述过程直到子区域内没有实例时终止(终止时的结点为叶结点)。在此过程中,将实例保存在相应的结点上。
(4)通常,循环的选择坐标轴对空间切分,选择训练实例点在坐标轴上的中位数为切分点,这样得到的kd树是平衡的(平衡二叉树:它是一棵空树,或其左子树和右子树的深度之差的绝对值不超过1,且它的左子树和右子树都是平衡二叉树)。
KD树中每个节点是一个向量,和二叉树按照数的大小划分不同的是,KD树每层需要选定向量中的某一维,然后根据这一维按左小右大的方式划分数据。在构建KD树时,关键需要解决2个问题:
(1)选择向量的哪一维进行划分;
(2)如何划分数据;
第一个问题简单的解决方法可以是随机选择某一维或按顺序选择,但是更好的方法应该是在数据比较分散的那一维进行划分(分散的程度可以根据方差来衡量)。
第二个问题中,好的划分方法可以使构建的树比较平衡,可以每次选择中位数来进行划分。
3 案例分析
3.1 树的建立
给定一个二维空间数据集:T={(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},构造一个平衡kd树。
图片无法加载
(1)思路引导:
根结点对应包含数据集T的矩形,选择x(1)轴,6个数据点的x(1)坐标中位数是6,这里选最接近的(7,2)点,以平面x(1)=7将空间分为左、右两个子矩形(子结点);接着左矩形以x(2)=4分为两个子矩形(左矩形中{(2,3),(5,4),(4,7)}点的x(2)坐标中位数正好为4),右矩形以x(2)=6分为两个子矩形,如此递归,最后得到如下图所示的特征空间划分和kd树。
图片无法加载
3.2 最近领域的搜索
假设标记为星星的点是 test point, 绿色的点是找到的近似点,在回溯过程中,需要用到一个队列,存储需要回溯的点,在判断其他子节点空间中是否有可能有距离查询点更近的数据点时,做法是以查询点为圆心,以当前的最近距离为半径画圆,这个圆称为候选超球(candidate hypersphere),如果圆与回溯点的轴相交,则需要将轴另一边的节点都放到回溯队列里面来。
图片无法加载
样本集{(2,3),(5,4), (9,6), (4,7), (8,1), (7,2)}
3.2.1 查找点(2.1,3.1)
图片无法加载
在(7,2)点测试到达(5,4),在(5,4)点测试到达(2,3),然后search_path中的结点为<(7,2),(5,4), (2,3)>,从search_path中取出(2,3)作为当前最佳结点nearest, dist为0.141;
然后回溯至(5,4),以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆,并不和超平面y=4相交,如上图,所以不必跳到结点(5,4)的右子空间去搜索,因为右子空间中不可能有更近样本点了。
于是再回溯至(7,2),同理,以(2.1,3.1)为圆心,以dist=0.141为半径画一个圆并不和超平面x=7相交,所以也不用跳到结点(7,2)的右子空间去搜索。
至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2.1,3.1)的最近邻点,最近距离为0.141。
3.2.2 查找点(2,4.5)
图片无法加载
在(7,2)处测试到达(5,4),在(5,4)处测试到达(4,7)【优先选择在本域搜索】,然后search_path中的结点为<(7,2),(5,4), (4,7)>,从search_path中取出(4,7)作为当前最佳结点nearest, dist为3.202;
然后回溯至(5,4),以(2,4.5)为圆心,以dist=3.202为半径画一个圆与超平面y=4相交,所以需要跳到(5,4)的左子空间去搜索。所以要将(2,3)加入到search_path中,现在search_path中的结点为<(7,2),(2, 3)>;另外,(5,4)与(2,4.5)的距离为3.04 < dist = 3.202,所以将(5,4)赋给nearest,并且dist=3.04。
回溯至(2,3),(2,3)是叶子节点,直接平判断(2,3)是否离(2,4.5)更近,计算得到距离为1.5,所以nearest更新为(2,3),dist更新为(1.5)
回溯至(7,2),同理,以(2,4.5)为圆心,以dist=1.5为半径画一个圆并不和超平面x=7相交, 所以不用跳到结点(7,2)的右子空间去搜索。
至此,search_path为空,结束整个搜索,返回nearest(2,3)作为(2,4.5)的最近邻点,最近距离为1.5。
4 总结
-
kd树的构建过程【知道】
-
1.构造根节点
- 2.通过递归的方法,不断地对k维空间进行切分,生成子节点
- 3.重复第二步骤,直到子区域中没有示例时终止
-
需要关注细节:a.选择向量的哪一维进行划分;b.如何划分数据
-
kd树的搜索过程【知道】
-
1.二叉树搜索比较待查询节点和分裂节点的分裂维的值,(小于等于就进入左子树分支,大于就进入右子树分支直到叶子结点)
- 2.顺着“搜索路径”找到最近邻的近似点
- 3.回溯搜索路径,并判断搜索路径上的结点的其他子结点空间中是否可能有距离查询点更近的数据点,如果有可能,则需要跳到其他子结点空间中去搜索
- 4.重复这个过程直到搜索路径为空
- 点赞
- 收藏
- 关注作者
评论(0)