【机器学习】嘿马机器学习(算法篇)第1篇:Introduction,定位【附代码文档】

举报
程序员一诺python 发表于 2024/08/14 21:29:04 2024/08/14
【摘要】 本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯

本教程的知识点为:机器学习算法定位、 K-近邻算法 1.4 k值的选择 1 K值选择说明 1.6 案例:鸢尾花种类预测--数据集介绍 1 案例:鸢尾花种类预测 1.8 案例:鸢尾花种类预测—流程实现 1 再识K-近邻算法API 1.11 案例2:预测facebook签到位置 1 项目描述 线性回归 2.3 数学:求导 1 常见函数的导数 线性回归 2.5 梯度下降方法介绍 1 详解梯度下降算法 线性回归 2.6 线性回归api再介绍 小结 线性回归 2.9 正则化线性模型 1 Ridge Regression (岭回归,又名 Tikhonov regularization) 逻辑回归 3.3 案例:癌症分类预测-良/恶性乳腺癌肿瘤预测 1 背景介绍 决策树算法 4.2 决策树分类原理 1 熵 决策树算法 4.3 cart剪枝 1 为什么要剪枝 决策树算法 4.4 特征工程-特征提取 1 特征提取 决策树算法 4.5 决策树算法api 4.6 案例:泰坦尼克号乘客生存预测 集成学习基础 5.1 集成学习算法简介 1 什么是集成学习 2 复习:机器学习的两个核心任务 集成学习基础 5.3 otto案例介绍 -- Otto Group Product Classification Challenge 1.背景介绍 2.数据集介绍 3.评分标准 集成学习基础 5.5 GBDT介绍 1 Decision Tree:CART回归树 1.1 回归树生成算法(复习) 聚类算法 6.1 聚类算法简介 1 认识聚类算法 聚类算法 6.5 算法优化 1 Canopy算法配合初始聚类 聚类算法 6.7 案例:探究用户对物品类别的喜好细分 1 需求 第一章知识补充:再议数据分割 1 留出法 2 交叉验证法 KFold和StratifiedKFold 3 自助法 正规方程的另一种推导方式 1.损失表示方式 2.另一种推导方式 梯度下降法算法比较和进一步优化 1 算法比较 2 梯度下降优化算法 第二章知识补充: 多项式回归 1 多项式回归的一般形式 维灾难 1 什么是维灾难 2 维数灾难与过拟合 第三章补充内容:分类中解决类别不平衡问题 1 类别不平衡数据集基本介绍 向量与矩阵的范数 1.向量的范数 2.矩阵的范数 如何理解无偏估计?无偏估计有什么用? 1.如何理解无偏估计

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

Introduction

机器学习算法课程定位、目标

定位

  • 课程以算法、案例为驱动的学习,伴随浅显易懂的数学知识
  • 作为人工智能领域的提升课程,掌握更深更有效的解决问题技能

目标

  • 掌握机器学习常见算法原理
  • 应用Scikit-learn实现机器学习算法的应用,
  • 结合场景解决实际问题

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.1 K-近邻算法简介

学习目标

  • 目标

  • 了解什么是KNN算法

  • 知道KNN算法求解过程

1 什么是K-近邻算法

图片无法加载

  • 根据你的“邻居”来推断出你的类别

1.1 K-近邻算法(KNN)概念

K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法

  • 定义

如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

来源:KNN算法最早是由Cover和Hart提出的一种分类算法

  • 距离公式

两个样本的距离可以通过如下公式计算,又叫欧式距离 ,关于距离公式会在后面进行讨论

图片无法加载

图片无法加载

1.2 电影类型分析

假设我们现在有几部电影

图片无法加载

其中? 9号电影不知道类别,如何去预测?我们可以利用K近邻算法的思想

图片无法加载

分别计算每个电影和被预测电影的距离,然后求解

图片无法加载

1.3 KNN算法流程总结

1)计算已知类别数据集中的点与当前点之间的距离

2)按距离递增次序排序

3)选取与当前点距离最小的k个点

4)统计前k个点所在的类别出现的频率

5)返回前k个点出现频率最高的类别作为当前点的预测分类

2 小结

  • K-近邻算法简介【了解】

  • 定义:就是通过你的"邻居"来判断你属于哪个类别

  • 如何计算你到你的"邻居"的距离:一般时候,都是使用欧氏距离

1.2 k近邻算法api初步使用

学习目标

  • 目标

  • 了解sklearn工具的优点和包含内容

  • 应用sklearn中的api实现KNN算法的简单使用

  • 机器学习流程复习:

图片无法加载

  • 1.获取数据集
  • 2.数据基本处理
  • 3.特征工程
  • 4.机器学习
  • 5.模型评估

1 Scikit-learn工具介绍

图片无法加载

  • Python语言的机器学习工具
  • Scikit-learn包括许多知名的机器学习算法的实现
  • Scikit-learn文档完善,容易上手,丰富的API
  • 目前稳定版本0.19.1

1.1 安装

pip3 install scikit-learn==0.19.1

安装好之后可以通过以下命令查看是否安装成功

import sklearn
  • 注:安装scikit-learn需要Numpy, Scipy等库

1.2 Scikit-learn包含的内容

图片无法加载

  • 分类、聚类、回归
  • 特征工程
  • 模型选择、调优

2 K-近邻算法API

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5)

  • n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数

3 案例

3.1 步骤分析

  • 1.获取数据集
  • 2.数据基本处理(该案例中省略)
  • 3.特征工程(该案例中省略)
  • 4.机器学习
  • 5.模型评估(该案例中省略)

3.2 代码过程

  • 导入模块
from sklearn.neighbors import KNeighborsClassifier
  • 构造数据集
x = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]
  • 机器学习 -- 模型训练
# 实例化API


estimator = KNeighborsClassifier(n_neighbors=1)


# 使用fit方法进行训练


estimator.fit(x, y)

estimator.predict([[1]])

4 小结

  • sklearn的优势:

  • 文档多,且规范

  • 包含的算法多
  • 实现起来容易

  • knn中的api

  • sklearn.neighbors.KNeighborsClassifier(n_neighbors=5)

问题

1.距离公式,除了欧式距离,还有哪些距离公式可以使用?

2.选取K值的大小?

3.api中其他参数的具体含义?

K-近邻算法

学习目标

  • 掌握K-近邻算法实现过程
  • 知道K-近邻算法的距离公式
  • 知道K-近邻算法的超参数K值以及取值问题
  • 知道kd树实现搜索的过程
  • 应用KNeighborsClassifier实现分类
  • 知道K-近邻算法的优缺点
  • 知道交叉验证实现过程
  • 知道超参数搜索过程
  • 应用GridSearchCV实现算法参数的调优

1.3 距离度量

学习目标

  • 目标

  • 了解距离公式的基本性质

  • 知道机器学习中常见的距离计算公式

1 距离公式的基本性质

在机器学习过程中,对于函数dist(.,.)dist(., .),若它是一"距离度量" (distance measure),则需满足一些基本性质:

  • 非负性:dist(Xi,Xj)>=0dist(X_i,X_j) >= 0
  • 同一性:dist(xi,xj)=0dist(x_i,x_j)=0。当且仅当<mr
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。