基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库

举报
简简单单做算法 发表于 2024/07/25 19:22:03 2024/07/25
【摘要】 1.算法运行效果图预览(完整程序运行后无水印) 1.训练过程  2.样本库    3.提取的步态能量图  4.步态识别结果和样本真实标签  2.算法运行软件版本MATLAB2022a 3.部分核心程序(完整版代码包含详细中文注释,训练CASIA库)digitDatasetPath = ['步态能量图\0\'];imds = imageDatastore(digitDatasetPath,'I...

1.算法运行效果图预览

(完整程序运行后无水印)

 

1.训练过程

 

1.jpeg

 

2.样本库

 

 

2.gif

3.jpeg

 

 

3.提取的步态能量图

 

4.jpeg

 

4.步态识别结果和样本真实标签

 

5.jpeg

 

2.算法运行软件版本

MATLAB2022a

 

3.部分核心程序

(完整版代码包含详细中文注释,训练CASIA库)

digitDatasetPath = ['步态能量图\0\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles               = 2;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.8);
 
%定义卷积神经网络的基础结构
layers = [
    imageInputLayer([400 120 1]);%注意,400,150为能量图的大小,不能改
............................................................
    %全连接层
    fullyConnectedLayer(20);
    %softmax
    softmaxLayer;
    %输出分类结果
    classificationLayer;];
 
%设置训练参数
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 0.0001, ...
    'MaxEpochs', 1000, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', imdsValidation, ...
    'ValidationFrequency', 10, ...
    'Verbose', false, ...
    'Plots', 'training-progress');
 
%使用训练集训练网络
net         = trainNetwork(imdsTrain, layers, options);
 
save CNN.mat net
05_001m

 

4.算法理论概述

       步态识别是一种生物特征识别技术,它通过个体走路的方式(如步长、步频、肢体摆动等)来辨认个人身份。基于卷积神经网络(Convolutional Neural Networks, CNN)的步态识别方法,利用深度学习的强大特征提取能力,可以从视频序列中自动学习步态的时空特征,进而实现高效的个体识别。

 

4.1步态识别系统框架

一个典型的基于CNN的步态识别系统包括以下几个关键步骤:

 

数据预处理:包括图像标准化、尺寸统一、背景消除等,以减少噪声和无关因素的干扰。

特征提取:利用CNN自动提取步态的时空特征。

模型构建:设计CNN架构,包括卷积层、池化层、全连接层及输出层等。

训练与优化:使用带标签的步态数据对模型进行训练,通过反向传播和优化算法(如AdamSGD)调整权重。

识别测试:对新的步态样本进行预测,输出最可能的身份标签。

4.2 CNN原理及数学表述

CNN通过卷积层、池化层、激活函数等组件来学习特征。以一个简单的CNN层为例:

 

6.png

 

     步态识别中的CNN模型通常包含多个卷积层和池化层,用于提取步态序列中的时空特征。每一帧步态图像经过卷积和池化后,特征逐渐抽象,最终通过全连接层映射到分类标签上。

 

4.3 CASIA步态数据库

      CASIA步态数据库是中国科学院自动化研究所发布的权威步态数据集,包含大量个体在不同视角、不同衣着条件下的行走视频。利用此数据库进行训练和测试,要求模型具有良好的泛化能力和鲁棒性。

 

       基于CNN的步态识别技术通过深度学习模型强大的特征学习能力,实现了对步态序列的有效分析和个体身份的准确识别。结合如CASIA这样的高质量步态数据库,该方法在实际应用中展现出优异的性能,特别是在监控、安全认证等领域有着广泛的应用前景。

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。