深度学习:线性回归从零开始实现
一、从零开始实现
1.生成数据集
根据带有噪声的线性模型构造一个人造数据集。 我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。 我们将使用低维数据,这样可以很容易地将其可视化。 在下面的代码中,我们生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征。
def synthetic_data(w, b, num_examples): #@save
"""生成y=Xw+b+噪声"""
X = torch.normal(0, 1, (num_examples, len(w)))
y = torch.matmul(X, w) + b
y += torch.normal(0, 0.01, y.shape)
return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)
注意,features中的每一行都包含一个二维数据样本, labels中的每一行都包含一维标签值(一个标量)。
print('features:', features[0],'\nlabel:', labels[0])
通过生成第二个特征features[:, 1]和labels的散点图, 可以直观观察到两者之间的线性关系。
d2l.set_figsize()
d2l.plt.scatter(features[:, (1)].detach().numpy(), labels.detach().numpy(), 1);
2.读取数据集
定义一个data_iter函数, 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量。 每个小批量包含一组特征和标签。
def data_iter(batch_size, features, labels):
num_examples = len(features)
indices = list(range(num_examples))
# 这些样本是随机读取的,没有特定的顺序
random.shuffle(indices)
for i in range(0, num_examples, batch_size):
batch_indices = torch.tensor(
indices[i: min(i + batch_size, num_examples)])
yield features[batch_indices], labels[batch_indices]
通常,我们利用GPU并行运算的优势,处理合理大小的“小批量”。 每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。 GPU可以在处理几百个样本时,所花费的时间不比处理一个样本时多太多。
我们直观感受一下小批量运算:读取第一个小批量数据样本并打印。 每个批量的特征维度显示批量大小和输入特征数。 同样的,批量的标签形状与batch_size相等。
batch_size = 10
for X, y in data_iter(batch_size, features, labels):
print(X, '\n', y)
break
tensor([[ 0.3934, 2.5705],
[ 0.5849, -0.7124],
[ 0.1008, 0.6947],
[-0.4493, -0.9037],
[ 2.3104, -0.2798],
[-0.0173, -0.2552],
[ 0.1963, -0.5445],
[-1.0580, -0.5180],
[ 0.8417, -1.5547],
[-0.6316, 0.9732]])
tensor([[-3.7623],
[ 7.7852],
[ 2.0443],
[ 6.3767],
[ 9.7776],
[ 5.0301],
[ 6.4541],
[ 3.8407],
[11.1396],
[-0.3836]])
当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。 上面实现的迭代对教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。 例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。 在深度学习框架中实现的内置迭代器效率要高得多, 它可以处理存储在文件中的数据和数据流提供的数据。
3.初始化模型参数
在我们开始用小批量随机梯度下降优化我们的模型参数之前, 我们需要先有一些参数。 在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。
w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
4.定义模型
def linreg(X, w, b): #@save
"""线性回归模型"""
return torch.matmul(X, w) + b
5.定义损失函数
因为需要计算损失函数的梯度,所以我们应该先定义损失函数。在实现中,我们需要将真实值y的形状转换为和预测值y_hat的形状相同。
def squared_loss(y_hat, y): #@save
"""均方损失"""
return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2
6.定义优化算法
我们用批量大小(batch_size) 来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。
def sgd(params, lr, batch_size): #@save
"""小批量随机梯度下降"""
with torch.no_grad():
for param in params:
param -= lr * param.grad / batch_size
param.grad.zero_()
7.训练
在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测。 计算完损失后,我们开始反向传播,存储每个参数的梯度。 最后,我们调用优化算法sgd来更新模型参数。
lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
for X, y in data_iter(batch_size, features, labels):
l = loss(net(X, w, b), y) # X和y的小批量损失
# 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
# 并以此计算关于[w,b]的梯度
l.sum().backward()
sgd([w, b], lr, batch_size) # 使用参数的梯度更新参数
with torch.no_grad():
train_l = loss(net(features, w, b), labels)
print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')
二、简单实现
在过去的几年里,出于对深度学习强烈的兴趣, 许多公司、学者和业余爱好者开发了各种成熟的开源框架。 这些框架可以自动化基于梯度的学习算法中重复性的工作。
1.生成数据集
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
2.读取数据集
可以调用框架中现有的API来读取数据。 我们将features和labels作为API的参数传递,并通过数据迭代器指定batch_size。 此外,布尔值is_train表示是否希望数据迭代器对象在每个迭代周期内打乱数据。
def load_array(data_arrays, batch_size, is_train=True): #@save
"""构造一个PyTorch数据迭代器"""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
next(iter(data_iter))
[tensor([[-1.3116, -0.3062],
[-1.5653, 0.4830],
[-0.8893, -0.9466],
[-1.2417, 1.6891],
[-0.7148, 0.1376],
[-0.2162, -0.6122],
[ 2.4048, -0.3211],
[-0.1516, 0.4997],
[ 1.5298, -0.2291],
[ 1.3895, 1.2602]]),
tensor([[ 2.6073],
[-0.5787],
[ 5.6339],
[-4.0211],
[ 2.3117],
[ 5.8492],
[10.0926],
[ 2.1932],
[ 8.0441],
[ 2.6943]])]
3.定义模型
在PyTorch中,全连接层在Linear类中定义。 值得注意的是,我们将两个参数传递到nn.Linear中。 第一个指定输入特征形状,即2,第二个指定输出特征形状,输出特征形状为单个标量,因此为1。
# nn是神经网络的缩写
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
4.初始化模型参数
正如我们在构造nn.Linear时指定输入和输出尺寸一样, 现在我们能直接访问参数以设定它们的初始值。 我们通过net[0]选择网络中的第一个图层, 然后使用weight.data和bias.data方法访问参数。 我们还可以使用替换方法normal_和fill_来重写参数值。
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
5.定义损失函数
计算均方误差使用的是MSELoss类,也称为平方L2范数。 默认情况下,它返回所有样本损失的平均值。
loss = nn.MSELoss()
6.定义优化算法
小批量随机梯度下降算法是一种优化神经网络的标准工具, PyTorch在optim模块中实现了该算法的许多变种。 当我们实例化一个SGD实例时,我们要指定优化的参数 (可通过net.parameters()从我们的模型中获得)以及优化算法所需的超参数字典。 小批量随机梯度下降只需要设置lr值,这里设置为0.03。
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
7.训练
通过深度学习框架的高级API来实现我们的模型只需要相对较少的代码。 我们不必单独分配参数、不必定义我们的损失函数,也不必手动实现小批量随机梯度下降。 当我们需要更复杂的模型时,高级API的优势将大大增加。 当我们有了所有的基本组件,训练过程代码与我们从零开始实现时所做的非常相似。
在每个迭代周期里,我们将完整遍历一次数据集(train_data), 不停地从中获取一个小批量的输入和相应的标签。 对于每一个小批量,我们会进行以下步骤:
- 通过调用net(X)生成预测并计算损失l(前向传播)。
- 通过进行反向传播来计算梯度。
- 通过调用优化器来更新模型参数。
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
l = loss(net(X) ,y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch {epoch + 1}, loss {l:f}')
epoch 1, loss 0.000248
epoch 2, loss 0.000103
epoch 3, loss 0.000103
- 点赞
- 收藏
- 关注作者
评论(0)