【昇思25天学习打卡营打卡指南-第十一天】ResNet50迁移学习

举报
JeffDing 发表于 2024/07/07 10:33:16 2024/07/07
【摘要】 ResNet50迁移学习 ResNet网络介绍ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比2...

ResNet50迁移学习

ResNet网络介绍

ResNet50网络是2015年由微软实验室的何恺明提出,获得ILSVRC2015图像分类竞赛第一名。在ResNet网络提出之前,传统的卷积神经网络都是将一系列的卷积层和池化层堆叠得到的,但当网络堆叠到一定深度时,就会出现退化问题。下图是在CIFAR-10数据集上使用56层网络与20层网络训练误差和测试误差图,由图中数据可以看出,56层网络比20层网络训练误差和测试误差更大,随着网络的加深,其误差并没有如预想的一样减小。

image.png

ResNet网络提出了残差网络结构(Residual Network)来减轻退化问题,使用ResNet网络可以实现搭建较深的网络结构(突破1000层)。论文中使用ResNet网络在CIFAR-10数据集上的训练误差与测试误差图如下图所示,图中虚线表示训练误差,实线表示测试误差。由图中数据可以看出,ResNet网络层数越深,其训练误差和测试误差越小。

image.png

了解ResNet网络更多详细内容,参见ResNet论文

操作实践

数据准备

下载数据集

下载案例所用到的狗与狼分类数据集,数据集中的图像来自于ImageNet,每个分类有大约120张训练图像与30张验证图像。使用download接口下载数据集,并将下载后的数据集自动解压到当前目录下。

from download import download

dataset_url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/intermediate/Canidae_data.zip"

download(dataset_url, "./datasets-Canidae", kind="zip", replace=True)

数据集的目录结构如下:

datasets-Canidae/data/
└── Canidae
    ├── train
    │   ├── dogs
    │   └── wolves
    └── val
        ├── dogs
        └── wolves

加载数据集

狼狗数据集提取自ImageNet分类数据集,使用mindspore.dataset.ImageFolderDataset接口来加载数据集,并进行相关图像增强操作。

首先执行过程定义一些输入:

import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision

batch_size = 18                             # 批量大小
image_size = 224                            # 训练图像空间大小
num_epochs = 5                             # 训练周期数
lr = 0.001                                  # 学习率
momentum = 0.9                              # 动量
workers = 4                                 # 并行线程个数

# 数据集目录路径
data_path_train = "./datasets-Canidae/data/Canidae/train/"
data_path_val = "./datasets-Canidae/data/Canidae/val/"

# 创建训练数据集

def create_dataset_canidae(dataset_path, usage):
    """数据加载"""
    data_set = ds.ImageFolderDataset(dataset_path,
                                     num_parallel_workers=workers,
                                     shuffle=True,)

    # 数据增强操作
    mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
    std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
    scale = 32

    if usage == "train":
        # Define map operations for training dataset
        trans = [
            vision.RandomCropDecodeResize(size=image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
            vision.RandomHorizontalFlip(prob=0.5),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]
    else:
        # Define map operations for inference dataset
        trans = [
            vision.Decode(),
            vision.Resize(image_size + scale),
            vision.CenterCrop(image_size),
            vision.Normalize(mean=mean, std=std),
            vision.HWC2CHW()
        ]


    # 数据映射操作
    data_set = data_set.map(
        operations=trans,
        input_columns='image',
        num_parallel_workers=workers)


    # 批量操作
    data_set = data_set.batch(batch_size)

    return data_set


dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

运行结果

Tensor of image (18, 3, 224, 224)
Labels: [0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1]

数据集可视化

mindspore.dataset.ImageFolderDataset接口中加载的训练数据集返回值为字典,用户可通过 create_dict_iterator 接口创建数据迭代器,使用 next 迭代访问数据集。本章中 batch_size 设为18,所以使用 next 一次可获取18个图像及标签数据。

data = next(dataset_train.create_dict_iterator())
images = data["image"]
labels = data["label"]

print("Tensor of image", images.shape)
print("Labels:", labels)

对获取到的图像及标签数据进行可视化,标题为图像对应的label名称。

import matplotlib.pyplot as plt
import numpy as np

# class_name对应label,按文件夹字符串从小到大的顺序标记label
class_name = {0: "dogs", 1: "wolves"}

plt.figure(figsize=(5, 5))
for i in range(4):
    # 获取图像及其对应的label
    data_image = images[i].asnumpy()
    data_label = labels[i]
    # 处理图像供展示使用
    data_image = np.transpose(data_image, (1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    data_image = std * data_image + mean
    data_image = np.clip(data_image, 0, 1)
    # 显示图像
    plt.subplot(2, 2, i+1)
    plt.imshow(data_image)
    plt.title(class_name[int(labels[i].asnumpy())])
    plt.axis("off")

plt.show()

image.png

训练模型

本章使用ResNet50模型进行训练。搭建好模型框架后,通过将pretrained参数设置为True来下载ResNet50的预训练模型并将权重参数加载到网络中。

构建Resnet50网络

from typing import Type, Union, List, Optional
from mindspore import nn, train
from mindspore.common.initializer import Normal


weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class ResidualBlockBase(nn.Cell):
    expansion: int = 1  # 最后一个卷积核数量与第一个卷积核数量相等

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, norm: Optional[nn.Cell] = None,
                 down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlockBase, self).__init__()
        if not norm:
            self.norm = nn.BatchNorm2d(out_channel)
        else:
            self.norm = norm

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.conv2 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=3, weight_init=weight_init)
        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):
        """ResidualBlockBase construct."""
        identity = x  # shortcuts分支

        out = self.conv1(x)  # 主分支第一层:3*3卷积层
        out = self.norm(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)
        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out

class ResidualBlock(nn.Cell):
    expansion = 4  # 最后一个卷积核的数量是第一个卷积核数量的4倍

    def __init__(self, in_channel: int, out_channel: int,
                 stride: int = 1, down_sample: Optional[nn.Cell] = None) -> None:
        super(ResidualBlock, self).__init__()

        self.conv1 = nn.Conv2d(in_channel, out_channel,
                               kernel_size=1, weight_init=weight_init)
        self.norm1 = nn.BatchNorm2d(out_channel)
        self.conv2 = nn.Conv2d(out_channel, out_channel,
                               kernel_size=3, stride=stride,
                               weight_init=weight_init)
        self.norm2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(out_channel, out_channel * self.expansion,
                               kernel_size=1, weight_init=weight_init)
        self.norm3 = nn.BatchNorm2d(out_channel * self.expansion)

        self.relu = nn.ReLU()
        self.down_sample = down_sample

    def construct(self, x):

        identity = x  # shortscuts分支

        out = self.conv1(x)  # 主分支第一层:1*1卷积层
        out = self.norm1(out)
        out = self.relu(out)
        out = self.conv2(out)  # 主分支第二层:3*3卷积层
        out = self.norm2(out)
        out = self.relu(out)
        out = self.conv3(out)  # 主分支第三层:1*1卷积层
        out = self.norm3(out)

        if self.down_sample is not None:
            identity = self.down_sample(x)

        out += identity  # 输出为主分支与shortcuts之和
        out = self.relu(out)

        return out

def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支


    if stride != 1 or last_out_channel != channel * block.expansion:

        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])

    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))

    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):

        layers.append(block(in_channel, channel))

    return nn.SequentialCell(layers)

def make_layer(last_out_channel, block: Type[Union[ResidualBlockBase, ResidualBlock]],
               channel: int, block_nums: int, stride: int = 1):
    down_sample = None  # shortcuts分支


    if stride != 1 or last_out_channel != channel * block.expansion:

        down_sample = nn.SequentialCell([
            nn.Conv2d(last_out_channel, channel * block.expansion,
                      kernel_size=1, stride=stride, weight_init=weight_init),
            nn.BatchNorm2d(channel * block.expansion, gamma_init=gamma_init)
        ])

    layers = []
    layers.append(block(last_out_channel, channel, stride=stride, down_sample=down_sample))

    in_channel = channel * block.expansion
    # 堆叠残差网络
    for _ in range(1, block_nums):

        layers.append(block(in_channel, channel))

    return nn.SequentialCell(layers)

固定特征进行训练

使用固定特征进行训练的时候,需要冻结除最后一层之外的所有网络层。通过设置 requires_grad == False 冻结参数,以便不在反向传播中计算梯度。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time

net_work = resnet50(pretrained=True)

# 全连接层输入层的大小
in_channels = net_work.fc.in_channels
# 输出通道数大小为狼狗分类数2
head = nn.Dense(in_channels, 2)
# 重置全连接层
net_work.fc = head

# 平均池化层kernel size为7
avg_pool = nn.AvgPool2d(kernel_size=7)
# 重置平均池化层
net_work.avg_pool = avg_pool

# 冻结除最后一层外的所有参数
for param in net_work.get_parameters():
    if param.name not in ["fc.weight", "fc.bias"]:
        param.requires_grad = False

# 定义优化器和损失函数
opt = nn.Momentum(params=net_work.trainable_params(), learning_rate=lr, momentum=0.5)
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')


def forward_fn(inputs, targets):
    logits = net_work(inputs)
    loss = loss_fn(logits, targets)

    return loss

grad_fn = ms.value_and_grad(forward_fn, None, opt.parameters)

def train_step(inputs, targets):
    loss, grads = grad_fn(inputs, targets)
    opt(grads)
    return loss

# 实例化模型
model1 = train.Model(net_work, loss_fn, opt, metrics={"Accuracy": train.Accuracy()})

训练和评估

开始训练模型,与没有预训练模型相比,将节约一大半时间,因为此时可以不用计算部分梯度。保存评估精度最高的ckpt文件于当前路径的./BestCheckpoint/resnet50-best-freezing-param.ckpt。

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
dataset_train = create_dataset_canidae(data_path_train, "train")
step_size_train = dataset_train.get_dataset_size()

dataset_val = create_dataset_canidae(data_path_val, "val")
step_size_val = dataset_val.get_dataset_size()

num_epochs = 5

# 创建迭代器
data_loader_train = dataset_train.create_tuple_iterator(num_epochs=num_epochs)
data_loader_val = dataset_val.create_tuple_iterator(num_epochs=num_epochs)
best_ckpt_dir = "./BestCheckpoint"
best_ckpt_path = "./BestCheckpoint/resnet50-best-freezing-param.ckpt"

import mindspore as ms
import matplotlib.pyplot as plt
import os
import time
# 开始循环训练
print("Start Training Loop ...")

best_acc = 0

for epoch in range(num_epochs):
    losses = []
    net_work.set_train()

    epoch_start = time.time()

    # 为每轮训练读入数据
    for i, (images, labels) in enumerate(data_loader_train):
        labels = labels.astype(ms.int32)
        loss = train_step(images, labels)
        losses.append(loss)

    # 每个epoch结束后,验证准确率

    acc = model1.eval(dataset_val)['Accuracy']

    epoch_end = time.time()
    epoch_seconds = (epoch_end - epoch_start) * 1000
    step_seconds = epoch_seconds/step_size_train

    print("-" * 20)
    print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (
        epoch+1, num_epochs, sum(losses)/len(losses), acc
    ))
    print("epoch time: %5.3f ms, per step time: %5.3f ms" % (
        epoch_seconds, step_seconds
    ))

    if acc > best_acc:
        best_acc = acc
        if not os.path.exists(best_ckpt_dir):
            os.mkdir(best_ckpt_dir)
        ms.save_checkpoint(net_work, best_ckpt_path)

print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "
      f"save the best ckpt file in {best_ckpt_path}", flush=True)

可视化模型预测

使用固定特征得到的best.ckpt文件对对验证集的狼和狗图像数据进行预测。若预测字体为蓝色即为预测正确,若预测字体为红色则预测错误。

import matplotlib.pyplot as plt
import mindspore as ms

def visualize_model(best_ckpt_path, val_ds):
    net = resnet50()
    # 全连接层输入层的大小
    in_channels = net.fc.in_channels
    # 输出通道数大小为狼狗分类数2
    head = nn.Dense(in_channels, 2)
    # 重置全连接层
    net.fc = head
    # 平均池化层kernel size为7
    avg_pool = nn.AvgPool2d(kernel_size=7)
    # 重置平均池化层
    net.avg_pool = avg_pool
    # 加载模型参数
    param_dict = ms.load_checkpoint(best_ckpt_path)
    ms.load_param_into_net(net, param_dict)
    model = train.Model(net)
    # 加载验证集的数据进行验证
    data = next(val_ds.create_dict_iterator())
    images = data["image"].asnumpy()
    labels = data["label"].asnumpy()
    class_name = {0: "dogs", 1: "wolves"}
    # 预测图像类别
    output = model.predict(ms.Tensor(data['image']))
    pred = np.argmax(output.asnumpy(), axis=1)

    # 显示图像及图像的预测值
    plt.figure(figsize=(5, 5))
    for i in range(4):
        plt.subplot(2, 2, i + 1)
        # 若预测正确,显示为蓝色;若预测错误,显示为红色
        color = 'blue' if pred[i] == labels[i] else 'red'
        plt.title('predict:{}'.format(class_name[pred[i]]), color=color)
        picture_show = np.transpose(images[i], (1, 2, 0))
        mean = np.array([0.485, 0.456, 0.406])
        std = np.array([0.229, 0.224, 0.225])
        picture_show = std * picture_show + mean
        picture_show = np.clip(picture_show, 0, 1)
        plt.imshow(picture_show)
        plt.axis('off')

    plt.show()

visualize_model(best_ckpt_path, dataset_val)

image.png

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。