基于PSO粒子群优化的PID控制器参数整定算法matlab仿真

举报
yd_293572134 发表于 2024/06/29 22:10:56 2024/06/29
【摘要】 1.课题概述       基于PSO粒子群优化的PID控制器参数整定。通过PSO不断的优化,使得PID控制器的控制反馈误差逐渐接近0,在完成优化迭代之后,对应的参数,即PID控制器的参数。 2.系统仿真结果3.核心程序与模型版本:MATLAB2022afor jj = 1: Iteration jj for j=1:Npop %速度更新 Vs(j,:)...

1.课题概述

       基于PSO粒子群优化的PID控制器参数整定。通过PSO不断的优化,使得PID控制器的控制反馈误差逐渐接近0,在完成优化迭代之后,对应的参数,即PID控制器的参数。

 

2.系统仿真结果

1.jpeg

2.jpeg

3.核心程序与模型

版本:MATLAB2022a

for jj = 1: Iteration
    jj

    for j=1:Npop
        %速度更新
        Vs(j,:) = 0.75*Vs(j,:) + c1*rand*(gbest(j,:) - Pops(j,:)) + c2*rand*(zbest - Pops(j,:));
............................................................
        %适应值
        yfits(j,:) = func_fitness(Pops(j,:));

        %最优更新     
        if yfits(j) < fgbest(j)
           gbest(j,:) = Pops(j,:);
           fgbest(j) = yfits(j);
        end

        %最优更新
        if yfits(j) < fzbest
           zbest  = Pops(j,:);
           fzbest = yfits(j);
        end
    end 
    %保持最优值
    y_fitness(1,jj) = fzbest;        
    Kps(1,jj)       = zbest(1);
    Kis(1,jj)       = zbest(2);
    Kds(1,jj)       = zbest(3);
end

figure
plot(y_fitness,'b-o')
legend('最优个体适应值');
xlabel('迭代次数');
ylabel('适应值');


figure
subplot(311)
plot(Kps,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
xlabel('迭代次数');
ylabel('参数值');
legend('Kp');
ylim([0,1100]);

subplot(312)
plot(Kis,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
xlabel('迭代次数');
ylabel('参数值');
legend('Ki');
ylim([0,30]);

subplot(313)
plot(Kds,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

xlabel('迭代次数');
ylabel('参数值');
legend('Kd');
ylim([0,500]);
27

4.系统原理简介

        基于PSO(粒子群优化)算法的PID(比例-积分-微分)控制器参数整定是一种优化方法,用于自动调整PID控制器的参数(比例增益Kp、积分增益Ki和微分增益Kd),以达到最佳的控制性能。

 

4.1 PID控制器简介

         PID控制器是一种广泛使用的控制算法,其输出由比例、积分和微分三个部分的线性组合构成。对于给定的系统误差e(t)(期望值与实际值之差),PID控制器的输出u(t)可以表示为:

 

3.png

 

其中,( K_p )( K_i ) ( K_d ) 分别是比例、积分和微分增益。

 

4.2 PSO算法原理

         PSO是一种基于群体智能的优化算法,通过模拟鸟群觅食行为中的社会信息共享机制来寻找问题的最优解。在PSO中,每个解被视为一个粒子,在搜索空间中以一定的速度和方向移动。每个粒子都有一个位置(代表解的值)和一个速度,以及一个由目标函数确定的适应度值。

 

粒子的速度和位置更新公式如下:

 

v(i)=v(i)w+c1rand*(pbest(i)-x(i))+c2*rand(gbest(i)-x(i))

 

x(i)=x(i)+v(i

 

       其中,( v_{i}(t) ) ( x_{i}(t) ) 分别是粒子i在时刻t的速度和位置;( pbest_{i} ) 是粒子i的个体历史最优位置;( gbest ) 是整个群体的全局最优位置;( w ) 是惯性权重;( c_1 ) ( c_2 ) 是学习因子;( r_1 ) ( r_2 ) [0,1]之间的随机数。

 

4.3 基于PSOPID参数整定

        在基于PSOPID参数整定中,我们将PID控制器的参数(( K_p ), ( K_i ), ( K_d ))编码为粒子的位置向量。目标函数通常与控制系统的性能指标相关,如误差积分(IAE)、时间乘以误差绝对值积分(ITAE)等。优化目标是最小化这个性能指标。算法步骤如下:

 

初始化粒子群,包括粒子的位置(PID参数)、速度和适应度值。

评估每个粒子的适应度值,即使用当前PID参数对控制系统进行仿真,并计算性能指标。

更新每个粒子的个体历史最优位置(pbest)和全局最优位置(gbest)。

根据PSO的速度和位置更新公式更新粒子的速度和位置。

重复步骤2-4,直到满足终止条件(如达到最大迭代次数或性能指标足够好)。

输出全局最优位置作为整定后的PID参数。

       基于PSOPID参数整定方法结合了PSO算法的全局搜索能力和PID控制器的简单有效性,为复杂控制系统的参数优化提供了一种有效手段。未来研究方向包括改进PSO算法以提高搜索效率、考虑控制系统的不确定性和非线性因素、以及将该方法应用于更广泛的工业控制场景。

 

 

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。