基于googlenet深度学习网络的睁眼闭眼识别算法matlab仿真

举报
简简单单做算法 发表于 2024/06/27 18:48:49 2024/06/27
【摘要】 1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.部分核心程序 % 对测试集进行分类预测[Predicted_Label, Probability] = classify(net, Resized_Dataset);% 随机选择一些图像进行可视化index = randperm(numel(Resized_Dataset.Files), 12);figurefor i ...

1.算法运行效果图预览

1.jpeg

2.jpeg

3.jpeg

 

2.算法运行软件版本

matlab2022a

 

3.部分核心程序

 

% 对测试集进行分类预测
[Predicted_Label, Probability] = classify(net, Resized_Dataset);
% 随机选择一些图像进行可视化
index = randperm(numel(Resized_Dataset.Files), 12);
figure
for i = 1:6
    subplot(2,3,i)
    I = imread(Resized_Dataset.Files{index(i)});% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(index(i));label
 
    if double(label) == 1
       title(['睁眼']);
    end
    if double(label) == 2
       title(['闭眼']);
    end
end
 
figure
for i = 1:6
    subplot(2,3,i)
    I = imread(Resized_Dataset.Files{index(i+6)});% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(index(i+6));label
 
    if double(label) == 1
       title(['睁眼']);
    end
    if double(label) == 2
       title(['闭眼']);
    end
end
146

 

4.算法理论概述

       基于GoogLeNet深度学习网络的睁眼闭眼识别算法是一种利用卷积神经网络(CNN)进行图像分类的任务,旨在识别图像中人物的眼睛状态,即判断眼睛是睁开还是闭合。GoogLeNet是由Christian Szegedy等人在2014年提出的,以其高效的深度和创新的Inception模块结构闻名,能在保持较高准确度的同时减少模型参数量,提高了计算效率。

4.png

5.png

6.png

 

       基于GoogLeNet的睁眼闭眼识别算法通过深度学习网络的层次化特征提取,实现了对图像中眼部状态的自动识别。利用高效的Inception结构减少计算量的同时保持了高精度,通过训练大量标注数据,模型能够学习到睁眼与闭眼的细微差别,进而做出准确的分类。

 

 

 

 

【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。