ESRI 10m 年度土地覆被图(2017-2023)
ESRI 10m 年度土地覆被图(2017-2023)
土地利用和土地覆被 (LULC) 年度全球地图时间序列已更新至 v3 版,包含 2017-2023 年全球 10 米土地覆被。这些地图来自欧空局哨兵-2 10 米分辨率图像。每张地图都是全年 9 个等级的 LULC 预测值的合成,以便生成每年的代表性快照。该数据集由 Impact Observatory 生成,他们使用了数十亿人类标记的像素(由国家地理学会策划)来训练土地分类的深度学习模型。全球地图是将该模型应用于行星计算机上的哨兵-2 年度场景集合而生成的。经评估,每张地图的平均准确率超过 75%。这些数据集由 Impact 天文台制作,并由 Esri 授权从 。
该地图使用了 10 类模型的更新模型,并将 Grass(原第 3 类)和 Scrub(原第 6 类)合并为一个牧场类(第 11 类)。最初的 Esri 2020 土地覆被图集使用了 10 个类别(草地和灌丛分开)和旧版本的底层深度学习模型。
也是由 Impact Observatory 制作的,您可以在此处的 GEE 中找到它。该地图仍可在现有应用程序中使用。一旦 2020 年的更新版本在本集合中可用,新应用程序应使用该版本,尤其是在使用该时间序列的多年数据时,以确保分类的一致性。您可以从这里的第一版开始了解更多信息 康吉斯(Kontgis, C.)(2021 年 6 月 24 日)。以前所未有的细节描绘世界
类别定义
水域 全年主要有水的区域;可能不包括零星或短暂有水的区域;几乎没有稀疏植被,没有岩石露头,也没有码头等建筑物;例如:河流、池塘、湖泊、海洋、淹没的盐碱地。
树木 任何高大(约 15 英尺或更高)茂密植被的明显集群,通常具有封闭或茂密的树冠;例如:林木植被、热带草原、种植园、沼泽或红树林内的茂密高大植被集群(茂密/高大植被下有短暂的水域或树冠太厚,无法探测到下面的水域)。
水淹植被 全年大部分时间明显混有水的任何类型的植被区;季节性水淹区,由草/灌木/树/荒地混合而成;例如:水淹红树林、出水植被、稻田和其他大量灌溉和淹没的农业区。
农作物 人类种植/耕种的谷物、草类和非树木高度的农作物;例如:玉米、小麦、大豆、休耕地。
建筑区 人类建造的建筑物;主要的公路和铁路网络;大型均质不透水表面,包括停车场结构、办公楼和住宅;例如:房屋、密集的村庄/城镇/城市、铺设的道路、沥青。
裸地 全年植被稀少甚至没有植被的岩石或土壤区域;没有或几乎没有植被的大面积沙地和沙漠;例如:裸露的岩石或土壤、沙漠和沙丘、干涸的盐滩/平原、干涸的湖床、矿井。
冰雪 大片均质的永久性冰雪区域,通常只出现在山区或纬度最高的地区;例如:冰川、永久性积雪、雪原。
云层 由于持续云层覆盖,没有土地覆盖信息。
牧场(Rangeland) 同质草丛覆盖的开阔地,几乎没有较高的植被;野生谷物和草丛,没有明显的人为种植(即,不 是有规划的田地);例如:稀疏甚至没有树木覆盖的天然草地和田地、稀疏甚至没有树木 的开阔稀树草原、公园/高尔夫球场/草坪、牧场。散布在裸露土壤或岩石上的小群植物或单株植物的混合体;茂密森林中灌木丛生的空地,其高度明显不超过树木;例如:灌木丛、灌木和草丛覆盖适中至稀疏,草、树木或其他植物非常稀疏的稀树草原。
有关精度评估信息,请访问 ESRI 发布页面“
”
Class Value | Remapped Value | Land Cover Class | Hex Code |
---|---|---|---|
1 | 1 | Water | #1A5BAB |
2 | 2 | Trees | |
4 | 3 | Flooded Vegetation | #87D19E |
5 | 4 | Crops | #FFDB5C |
7 | 5 | Built Area | #ED022A |
8 | 6 | Bare Ground | #EDE9E4 |
9 | 7 | Snow/Ice | #F2FAFF |
10 | 8 | Clouds | #C8C8C8 |
11 | 9 | Rangeland | #C6AD8D |
Earth Engine Snippet
代码链接:
引用:
Karra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.”
IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.
许可
This dataset was produced by Impact Observatory for Esri. © 2021 Esri. This dataset is available under a Creative Commons BY-4.0 license and any copy of or work based on this dataset requires the following attribution:
Changelog
- 2024-06-07 Added LULC 2023 to collection
-
Example path was changed
-
2023-04-10 Added LULC 2022 to collection
Curated in GEE by: Samapriya Roy
Keywords: : landcover, landuse, lulc, 10m, global, world, sentinel, sentinel 2, impact observatory
Last updated: 2024-06-07
网址推荐
0代码在线构建地图应用
https://invite.mapmost.com/#/login?source_inviter=nClSZANO
机器学习
- 点赞
- 收藏
- 关注作者
评论(0)