ModelBox-AI应用开发:动物分割【玩转华为云】
ModelBox-AI应用开发:动物分割
一、准备环境
ModelBox端云协同AI开发套件(Windows)环境准备【视频教程】
二、应用开发
1. 创建工程
在ModelBox
sdk目录下使用create.bat
创建animal_seg
工程
(tensorflow) PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t server -n animal_seg
(tensorflow) D:\modelbox-win10-x64-1.5.3>set BASE_PATH=D:\modelbox-win10-x64-1.5.3\
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PATH=D:\modelbox-win10-x64-1.5.3\\python-embed;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONPATH=
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONHOME=
(tensorflow) D:\modelbox-win10-x64-1.5.3>python.exe -u D:\modelbox-win10-x64-1.5.3\\create.py -t server -n animal_seg
sdk version is modelbox-win10-x64-1.5.3
dos2unix: converting file D:\modelbox-win10-x64-1.5.3\workspace\animal_seg/graph\animal_seg.toml to Unix format...
dos2unix: converting file D:\modelbox-win10-x64-1.5.3\workspace\animal_seg/graph\modelbox.conf to Unix format...
dos2unix: converting file D:\modelbox-win10-x64-1.5.3\workspace\animal_seg/bin\mock_task.toml to Unix format...
success: create animal_seg in D:\modelbox-win10-x64-1.5.3\workspace
create.bat
工具的参数中,-t
表示所创建实例的类型,包括server
(ModelBox
工程)、python
(Python功能单元)、c++
(C++功能单元)、infer
(推理功能单元)等;-n
表示所创建实例的名称,开发者自行命名。
2. 创建推理功能单元
在ModelBox
sdk目录下使用create.bat
创建linknet_infer
推理功能单元
(tensorflow) PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t infer -n linknet_infer -p animal_seg
(tensorflow) D:\modelbox-win10-x64-1.5.3>set BASE_PATH=D:\modelbox-win10-x64-1.5.3\
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PATH=D:\modelbox-win10-x64-1.5.3\\python-embed;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONPATH=
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONHOME=
(tensorflow) D:\modelbox-win10-x64-1.5.3>python.exe -u D:\modelbox-win10-x64-1.5.3\\create.py -t infer -n linknet_infer -p animal_seg
sdk version is modelbox-win10-x64-1.5.3
success: create infer linknet_infer in D:\modelbox-win10-x64-1.5.3\workspace\animal_seg/model/linknet_infer
create.bat
工具使用时,-t infer
即表示创建的是推理功能单元;-n xxx_infer
表示创建的功能单元名称为xxx_infer
;-p animal_seg
表示所创建的功能单元属于animal_seg
应用。
a. 下载转换好的模型
运行此Notebook下载转换好的ONNX格式模型
b. 修改模型配置文件
模型和配置文件保持在同级目录下
# Copyright (C) 2020 Huawei Technologies Co., Ltd. All rights reserved.
[base]
name = "linknet_infer"
device = "cpu"
version = "1.0.0"
description = "your description"
entry = "./linknet.onnx" # model file path, use relative path
type = "inference"
virtual_type = "onnx" # inference engine type: win10 now only support onnx
group_type = "Inference" # flowunit group attribution, do not change
# Input ports description
[input]
[input.input1] # input port number, Format is input.input[N]
name = "Input" # input port name
type = "float" # input port data type ,e.g. float or uint8
device = "cpu" # input buffer type: cpu, win10 now copy input from cpu
# Output ports description
[output]
[output.output1] # output port number, Format is output.output[N]
name = "Output" # output port name
type = "float" # output port data type ,e.g. float or uint8
3. 创建后处理功能单元
在ModelBox
sdk目录下使用create.bat
创建linknet_post
后处理功能单元
(tensorflow) PS D:\modelbox-win10-x64-1.5.3> .\create.bat -t python -n linknet_post -p animal_seg
(tensorflow) D:\modelbox-win10-x64-1.5.3>set BASE_PATH=D:\modelbox-win10-x64-1.5.3\
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PATH=D:\modelbox-win10-x64-1.5.3\\python-embed;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONPATH=
(tensorflow) D:\modelbox-win10-x64-1.5.3>set PYTHONHOME=
(tensorflow) D:\modelbox-win10-x64-1.5.3>python.exe -u D:\modelbox-win10-x64-1.5.3\\create.py -t python -n linknet_post -p animal_seg
sdk version is modelbox-win10-x64-1.5.3
success: create python linknet_post in D:\modelbox-win10-x64-1.5.3\workspace\animal_seg/etc/flowunit/linknet_post
a. 修改配置文件
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
# Basic config
[base]
name = "linknet_post" # The FlowUnit name
device = "cpu" # The flowunit runs on cpu
version = "1.0.0" # The version of the flowunit
type = "python" # Fixed value, do not change
description = "description" # The description of the flowunit
entry = "linknet_post@linknet_postFlowUnit" # Python flowunit entry function
group_type = "Generic" # flowunit group attribution, change as Input/Output/Image/Generic ...
# Flowunit Type
stream = false # Whether the flowunit is a stream flowunit
condition = false # Whether the flowunit is a condition flowunit
collapse = false # Whether the flowunit is a collapse flowunit
collapse_all = false # Whether the flowunit will collapse all the data
expand = false # Whether the flowunit is a expand flowunit
# The default Flowunit config
[config]
net_h = 256
net_w = 256
# Input ports description
[input]
[input.input1] # Input port number, the format is input.input[N]
name = "in_feat" # Input port name
type = "float" # Input port type
# Output ports description
[output]
[output.output1] # Output port number, the format is output.output[N]
name = "out_data" # Output port name
type = "string" # Output port type
b. 修改逻辑代码
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import _flowunit as modelbox
import numpy as np
import json
import cv2
class linknet_postFlowUnit(modelbox.FlowUnit):
# Derived from modelbox.FlowUnit
def __init__(self):
super().__init__()
def open(self, config):
# Open the flowunit to obtain configuration information
self.params = {}
self.params['net_h'] = config.get_int('net_h')
self.params['net_w'] = config.get_int('net_w')
return modelbox.Status.StatusCode.STATUS_SUCCESS
def process(self, data_context):
# Process the data
in_feat = data_context.input("in_feat")
out_data = data_context.output("out_data")
# linknet_post process code.
# Remove the following code and add your own code here.
for buffer_feat in in_feat:
feat_data = np.array(buffer_feat.as_object(), copy=False)
result = {"det_result": str(feat_data.tolist())}
result_str = json.dumps(result)
out_buffer = modelbox.Buffer(self.get_bind_device(), result_str)
out_data.push_back(out_buffer)
return modelbox.Status.StatusCode.STATUS_SUCCESS
def close(self):
# Close the flowunit
return modelbox.Status()
def data_pre(self, data_context):
# Before streaming data starts
return modelbox.Status()
def data_post(self, data_context):
# After streaming data ends
return modelbox.Status()
def data_group_pre(self, data_context):
# Before all streaming data starts
return modelbox.Status()
def data_group_post(self, data_context):
# After all streaming data ends
return modelbox.Status()
4. 修改流程图
animal_seg
工程graph
目录下存放流程图,默认的流程图animal_seg.toml
与工程同名,其内容为(以Windows版ModelBox
为例):
# Copyright (C) 2020 Huawei Technologies Co., Ltd. All rights reserved.
[driver]
dir = ["${HILENS_APP_ROOT}/etc/flowunit",
"${HILENS_APP_ROOT}/etc/flowunit/cpp",
"${HILENS_APP_ROOT}/model",
"${HILENS_MB_SDK_PATH}/flowunit"]
skip-default = true
[profile]
profile=false
trace=false
dir="${HILENS_DATA_DIR}/mb_profile"
[graph]
format = "graphviz"
graphconf = """digraph animal_seg {
node [shape=Mrecord]
queue_size = 4
batch_size = 1
input1[type=input,flowunit=input,device=cpu,deviceid=0]
httpserver_sync_receive[type=flowunit, flowunit=httpserver_sync_receive_v2, device=cpu, deviceid=0, time_out_ms=5000, endpoint="http://0.0.0.0:8083/v1/animal_seg", max_requests=100]
image_decoder[type=flowunit, flowunit=image_decoder, device=cpu, key="image_base64", queue_size=4]
image_resize[type=flowunit, flowunit=resize, device=cpu, deviceid=0, image_width=256, image_height=256]
normalize[type=flowunit, flowunit=normalize, device=cpu, deviceid=0, standard_deviation_inverse="0.003921568627450,0.003921568627450,0.003921568627450"]
linknet_infer[type=flowunit, flowunit=linknet_infer, device=cpu, deviceid=0, batch_size=1]
linknet_post[type=flowunit, flowunit=linknet_post, device=cpu, deviceid=0]
httpserver_sync_reply[type=flowunit, flowunit=httpserver_sync_reply_v2, device=cpu, deviceid=0]
input1:input -> httpserver_sync_receive:in_url
httpserver_sync_receive:out_request_info -> image_decoder:in_encoded_image
image_decoder:out_image -> image_resize:in_image
image_resize:out_image -> normalize:in_data
normalize:out_data -> linknet_infer:Input
linknet_infer:Output -> linknet_post:in_feat
linknet_post:out_data -> httpserver_sync_reply:in_reply_info
}"""
[flow]
desc = "animal_seg run in modelbox-win10-x64"
5. 准备动物图片和测试脚本
a. 动物图片
animal_seg
工程data
目录下存放动物图片test.jpg
b. 测试脚本
animal_seg
工程data
目录下存放测试脚本test_http.py
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved.
import os
import cv2
import json
import base64
import http.client
import numpy as np
class HttpConfig:
'''http调用的参数配置'''
def __init__(self, host_ip, port, url, img_base64_str):
self.hostIP = host_ip
self.Port = port
self.httpMethod = "POST"
self.requstURL = url
self.headerdata = {
"Content-Type": "application/json"
}
self.test_data = {
"image_base64": img_base64_str
}
self.body = json.dumps(self.test_data)
def read_image(img_path):
'''读取图片数据并转为base64编码的字符串'''
img_data = cv2.imread(img_path)
img_str = cv2.imencode('.jpg', img_data)[1].tobytes()
img_bin = base64.b64encode(img_str)
img_base64_str = str(img_bin, encoding='utf8')
return img_data, img_base64_str
def decode_result_str(result_str):
try:
result = json.loads(json.loads(result_str)['det_result'])
mask = np.array(list(result)).reshape(256, 256, 3)
except Exception as ex:
print(str(ex))
return []
else:
return np.argmax(mask, axis=-1)
def test_image(img_path, ip, port, url):
'''单张图片测试'''
img_data, img_base64_str = read_image(img_path)
http_config = HttpConfig(ip, port, url, img_base64_str)
conn = http.client.HTTPConnection(host=http_config.hostIP, port=http_config.Port)
conn.request(method=http_config.httpMethod, url=http_config.requstURL,
body=http_config.body, headers=http_config.headerdata)
response = conn.getresponse().read().decode()
mask = decode_result_str(response).astype(np.float32)
height, width = img_data.shape[:2]
mask = cv2.resize(mask, (width, height))
mask_0 = np.where(mask==0, 255, np.zeros(mask.shape))
mask_0 = mask_0.reshape(height, width, 1)
mask_2 = np.where(mask==2, 255, np.zeros(mask.shape))
mask_2 = mask_2.reshape(height, width, 1)
mask = np.concatenate((mask_0, mask_2, mask_0), axis=-1).astype(np.uint8)
image = cv2.addWeighted(img_data, 1, mask, 0.5, 0)
cv2.imwrite('./result-' + os.path.basename(img_path), image)
if __name__ == "__main__":
port = 8083
ip = "127.0.0.1"
url = "/v1/animal_seg"
img_path = "test.jpg"
test_image(img_path, ip, port, url)
三、运行应用
在animal_seg
工程目录下执行.\bin\main.bat
运行应用:
(tensorflow) PS D:\modelbox-win10-x64-1.5.3> cd D:\modelbox-win10-x64-1.5.3\workspace\animal_seg
(tensorflow) PS D:\modelbox-win10-x64-1.5.3\workspace\animal_seg> .\bin\main.bat
(tensorflow) D:\modelbox-win10-x64-1.5.3\workspace\animal_seg>set PATH=D:/modelbox-win10-x64-1.5.3/workspace/animal_seg/bin/../../../python-embed;D:/modelbox-win10-x64-1.5.3/workspace/animal_seg/bin/../../../modelbox-win10-x64/bin;D:/modelbox-win10-x64-1.5.3/workspace/animal_seg/bin/../dependence/lib;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3\envs\tensorflow;C:\Users\yanso\miniconda3\envs\tensorflow\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\usr\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Library\bin;C:\Users\yanso\miniconda3\envs\tensorflow\Scripts;C:\Users\yanso\miniconda3\envs\tensorflow\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Users\yanso\miniconda3\envs\tensorflow\lib\site-packages\pywin32_system32;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Library\mingw-w64\bin;C:\Users\yanso\miniconda3\Library\usr\bin;C:\Users\yanso\miniconda3\Library\bin;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\bin;C:\Users\yanso\miniconda3\condabin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin;C:\Windows\System32\HWAudioDriverLibs;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0;C:\Windows\System32\OpenSSH;C:\Users\Administrator\AppData\Local\Microsoft\WindowsApps;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\System32\WindowsPowerShell\v1.0;C:\WINDOWS\System32\OpenSSH;C:\Program Files\Git\cmd;C:\Users\yanso\miniconda3;C:\Users\yanso\miniconda3\Scripts;C:\Users\yanso\miniconda3\Library\bin;.;C:\Program Files\Git LFS;C:\Users\yanso\AppData\Local\Microsoft\WindowsApps;.;C:\Users\yanso\AppData\Local\Programs\Microsoft VS Code\bin
(tensorflow) D:\modelbox-win10-x64-1.5.3\workspace\animal_seg>modelbox.exe -c D:/modelbox-win10-x64-1.5.3/workspace/animal_seg/bin/../graph/modelbox.conf
[2024-06-07 06:07:44,657][ WARN][ iva_config.cc:143 ] update vas url failed. Fault, no vas projectid or iva endpoint
open log file D:/modelbox-win10-x64-1.5.3/workspace/animal_seg/bin/../hilens_data_dir/log/modelbox.log failed, No error
input dims is:1,256,256,3,
output dims is:1,256,256,3,
HTTP服务启动后可以在另一个终端进行请求测试,进入animal_seg
工程目录data
文件夹中使用test_http.py
脚本发起HTTP请求进行测试:
(tensorflow) PS D:\modelbox-win10-x64-1.5.3> cd D:\modelbox-win10-x64-1.5.3\workspace\animal_seg\data
(tensorflow) PS D:\modelbox-win10-x64-1.5.3\workspace\animal_seg\data> python .\test_http.py
分割后的图片保存在animal_seg
工程目录下的data
文件夹中
四、小结
本章我们介绍了如何使用ModelBox开发一个动物图片分割的AI应用,我们只需要准备模型文件以及简单的配置即可创建一个HTTP服务。同时我们可以了解到LinkNet网络的基本结构、数据处理和模型训练方法,以及对应的推理应用逻辑。
- 点赞
- 收藏
- 关注作者
评论(0)