【LLM】构建可以图像生成的聊天机器人(Stable-Diffusion)

举报
Freedom123 发表于 2024/04/29 16:00:12 2024/04/29
【摘要】 基于Stable-Diffusion模型构建可以生成图像的聊天机器人

今天,我从头开始创建图像生成聊天机器人。按照已经构建的聊天机器人 awesome-tiny-sd 的脚本来执行

awesome-tiny-sd项目地址:https://astrabert.github.io/awesome-tiny-sd

环境准备

安装依赖库

python3 -m pip install gradio==4.25.0 diffusers==0.27.2 torch==2.1.2 pydantic==2.6.4 accelerate transformers trl peft

安装完毕之后,在当前文件夹中创建文件如下:

./
|__ app.py
|__ imgen.py

第一步:导入stable-diffusion

导入stable-diffusion模型到imgen.py文件中

  • 导入依赖选项

    from diffusers import DiffusionPipeline
    import torch
    
  • 定义图像生成管道(这将自动下载您指定的稳定扩散模型及其所有相关组件

    pipeline = DiffusionPipeline.from_pretrained("segmind/small-sd", torch_dtype=torch.float32)
    

    我们选择的是segmind/small-sd,这个模型不是很大,而且对CPU支持友好。

    segmind/small-sd下载地址:https://huggingface.co/segmind/small-sd

第二步:定义核心函数

  • 导入依赖选项

    import gradio as gr
    import time
    from imgen import *
    
  • 定义一个简单功能,打印用户喜欢的和不喜欢的信息

    def print_like_dislike(x: gr.LikeData):
        print(x.index, x.value, x.liked)
    
  • 将新消息和/或上传的文件附加到聊天机器人历史记录的功能:

    def add_message(history, message):
        if len(message["files"]) > 0:
            history.append((message["files"], None))
        if message["text"] is not None and message["text"] != "":
            history.append((message["text"], None))
        return history, gr.MultimodalTextbox(value=None, interactive=False)
    
  • 从文本提示符开始生成图像的函数:

    def bot(history):
        if type(history[-1][0]) != tuple: ## text prompt
            try:
                prompt = history[-1][0]
                image = pipeline(prompt).images[0] ## call the model
                image.save("generated_image.png")
                response = ("generated_image.png",)
                history[-1][1] = response
                yield history ## return the image
            except Exception as e:
                response = f"Sorry, the error '{e}' occured while generating the response; check [troubleshooting documentation](https://astrabert.github.io/awesome-tiny-sd/#troubleshooting) for more"
                history[-1][1] = ""
                for character in response:
                    history[-1][1] += character
                    time.sleep(0.05)
                    yield history
        if type(history[-1][0]) == tuple: ## input are files
            response = f"Sorry, this version still does not support uploaded files :(" ## We will see how to add this functionality in the future
            history[-1][1] = ""
            for character in response:
                history[-1][1] += character
                time.sleep(0.05)
                yield history
    

第三步:构建聊天机器人

  • 使用 Gradio 定义聊天机器人块:

    with gr.Blocks() as demo:
        chatbot = gr.Chatbot(
            [[None, ("Hi, I am awesome-tiny-sd, a little stable diffusion model that lets you generate images:blush:\nJust write me a prompt, I'll generate what you ask for:heart:",)]], ## the first argument is the chat history
            label="awesome-tiny-sd",
            elem_id="chatbot",
            bubble_full_width=False,
        ) ## this is the base chatbot architecture
    
        chat_input = gr.MultimodalTextbox(interactive=True, file_types=["png","jpg","jpeg"], placeholder="Enter your image-generating prompt...", show_label=False) ## types of supported input
    
        chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) ## receive a message
        bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") ## send a message
        bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input])
    
        chatbot.like(print_like_dislike, None, None)
        clear = gr.ClearButton(chatbot) ## show clear button
    
  • 启动机器人

    demo.queue()
    if __name__ == "__main__":
        demo.launch(server_name="0.0.0.0", share=False)
    
  • 执行脚本

    python3 app.py
    

现在等着机器人启动成功,一单 stable diffusion 通道加载成功,聊天机器人应该在 localhost:7860(或类似 Linux 的操作系统为 0.0.0.0:7860)上运行。

小结

今天我们学习了通过stable diffusion模型构建对话机器人来生成图像信息,你可以通过 awesome-tiny-sd直接运行你的对话机器人来生成图像,您将使用 awesome-tiny-sd 生成的第一张图像是什么?请在下面的评论中告诉我

其他

线上体验地址:Hugging Face:https://huggingface.co/spaces/as-cle-bert/awesome-tiny-sd

您可以下载awesome-tiny-sd Docker镜像并通过容器运行它:

docker pull ghcr.io/astrabert/awesome-tiny-sd:latest
docker run -p 7860:7860 ghcr.io/astrabert/awesome-tiny-sd:latest
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。