【LLM】构建可以图像生成的聊天机器人(Stable-Diffusion)
今天,我从头开始创建图像生成聊天机器人。按照已经构建的聊天机器人 awesome-tiny-sd 的脚本来执行
awesome-tiny-sd项目地址:https://astrabert.github.io/awesome-tiny-sd
环境准备
安装依赖库
python3 -m pip install gradio==4.25.0 diffusers==0.27.2 torch==2.1.2 pydantic==2.6.4 accelerate transformers trl peft
安装完毕之后,在当前文件夹中创建文件如下:
./
|__ app.py
|__ imgen.py
第一步:导入stable-diffusion
导入stable-diffusion模型到imgen.py文件中
-
导入依赖选项
from diffusers import DiffusionPipeline import torch
-
定义图像生成管道(这将自动下载您指定的稳定扩散模型及其所有相关组件
pipeline = DiffusionPipeline.from_pretrained("segmind/small-sd", torch_dtype=torch.float32)
我们选择的是segmind/small-sd,这个模型不是很大,而且对CPU支持友好。
segmind/small-sd下载地址:https://huggingface.co/segmind/small-sd
第二步:定义核心函数
-
导入依赖选项
import gradio as gr import time from imgen import *
-
定义一个简单功能,打印用户喜欢的和不喜欢的信息
def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked)
-
将新消息和/或上传的文件附加到聊天机器人历史记录的功能:
def add_message(history, message): if len(message["files"]) > 0: history.append((message["files"], None)) if message["text"] is not None and message["text"] != "": history.append((message["text"], None)) return history, gr.MultimodalTextbox(value=None, interactive=False)
-
从文本提示符开始生成图像的函数:
def bot(history): if type(history[-1][0]) != tuple: ## text prompt try: prompt = history[-1][0] image = pipeline(prompt).images[0] ## call the model image.save("generated_image.png") response = ("generated_image.png",) history[-1][1] = response yield history ## return the image except Exception as e: response = f"Sorry, the error '{e}' occured while generating the response; check [troubleshooting documentation](https://astrabert.github.io/awesome-tiny-sd/#troubleshooting) for more" history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.05) yield history if type(history[-1][0]) == tuple: ## input are files response = f"Sorry, this version still does not support uploaded files :(" ## We will see how to add this functionality in the future history[-1][1] = "" for character in response: history[-1][1] += character time.sleep(0.05) yield history
第三步:构建聊天机器人
-
使用 Gradio 定义聊天机器人块:
with gr.Blocks() as demo: chatbot = gr.Chatbot( [[None, ("Hi, I am awesome-tiny-sd, a little stable diffusion model that lets you generate images:blush:\nJust write me a prompt, I'll generate what you ask for:heart:",)]], ## the first argument is the chat history label="awesome-tiny-sd", elem_id="chatbot", bubble_full_width=False, ) ## this is the base chatbot architecture chat_input = gr.MultimodalTextbox(interactive=True, file_types=["png","jpg","jpeg"], placeholder="Enter your image-generating prompt...", show_label=False) ## types of supported input chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) ## receive a message bot_msg = chat_msg.then(bot, chatbot, chatbot, api_name="bot_response") ## send a message bot_msg.then(lambda: gr.MultimodalTextbox(interactive=True), None, [chat_input]) chatbot.like(print_like_dislike, None, None) clear = gr.ClearButton(chatbot) ## show clear button
-
启动机器人
demo.queue() if __name__ == "__main__": demo.launch(server_name="0.0.0.0", share=False)
-
执行脚本
python3 app.py
现在等着机器人启动成功,一单 stable diffusion 通道加载成功,聊天机器人应该在 localhost:7860(或类似 Linux 的操作系统为 0.0.0.0:7860)上运行。
小结
今天我们学习了通过stable diffusion模型构建对话机器人来生成图像信息,你可以通过 awesome-tiny-sd直接运行你的对话机器人来生成图像,您将使用 awesome-tiny-sd 生成的第一张图像是什么?请在下面的评论中告诉我
其他
线上体验地址:Hugging Face:https://huggingface.co/spaces/as-cle-bert/awesome-tiny-sd
您可以下载awesome-tiny-sd Docker镜像并通过容器运行它:
docker pull ghcr.io/astrabert/awesome-tiny-sd:latest
docker run -p 7860:7860 ghcr.io/astrabert/awesome-tiny-sd:latest
- 点赞
- 收藏
- 关注作者
评论(0)