ACEPOL气溶胶对气候和空气质量的影响,测量气溶胶的化学成分、粒度分布、高度剖面和光学特性数据集

举报
此星光明 发表于 2024/04/11 09:16:58 2024/04/11
【摘要】 ​ ACEPOL_AircraftRemoteSensing_RSP_Data简介ACEPOL 研究扫描偏振计(RSP)遥感数据(ACEPOL_AircraftRemoteSensing_RSP_Data)是在 ACEPOL 期间由 ER-2 上的研究扫描偏振计(RSP)收集的遥感测量数据。为了更好地了解气溶胶对气候和空气质量的影响,测量气溶胶的化学成分、粒度分布、高度剖面和光学特性至关重要...

 ACEPOL_AircraftRemoteSensing_RSP_Data

简介

ACEPOL 研究扫描偏振计(RSP)遥感数据(ACEPOL_AircraftRemoteSensing_RSP_Data)是在 ACEPOL 期间由 ER-2 上的研究扫描偏振计(RSP)收集的遥感测量数据。为了更好地了解气溶胶对气候和空气质量的影响,测量气溶胶的化学成分、粒度分布、高度剖面和光学特性至关重要。在遥感仪器方面,通过将强度和偏振的被动多角度、多光谱测量与高光谱分辨率激光雷达进行的主动测量相结合,可以获得最广泛的气溶胶属性集合。2017 年秋季,由美国国家航空航天局(NASA)和荷兰空间研究所(SRON)联合发起的 "偏振计和激光雷达气溶胶特征描述(ACEPOL)"活动从 NASA 的高空 ER-2 飞机上对美国上空的气溶胶和云层进行了测量。飞机上部署了六台仪器。其中四台是多角度偏振计:机载超角彩虹偏振计(AirHARP)、机载多角度光谱偏振成像仪(AirMSPI)、机载行星探测光谱仪(SPEX Airborne)和研究扫描偏振计(RSP)。另外两台仪器是激光雷达:高光谱分辨率激光雷达 2(HSRL-2)和云物理激光雷达(CPL)。ACEPOL 的运行基地设在美国宇航局位于加利福尼亚州帕姆代尔的阿姆斯特朗飞行研究中心,从而能够观测各种场景类型,包括城市、沙漠、森林、沿海海洋和农业区,以及晴朗、多云、污染和原始大气条件。ACEPOL 的主要目标是评估不同偏振计检索气溶胶和云层微物理和光学参数的能力,以及它们推算气溶胶层高度的能力(近紫外偏振测量法,O2 A 波段)。ACEPOL 还侧重于开发和评估结合主动(激光雷达)和被动(偏振计)仪器数据的气溶胶检索算法。ACEPOL 数据适用于算法开发和测试、仪器相互比较以及主动和被动仪器数据融合研究,是遥感界准备下一代星载 MAP 和激光雷达任务的宝贵资源。

数据信息

Publisher NASA/LARC/SD/ASDC
Contact Name Kirk Knobelspiesse
Contact Email mailto:kirk.d.knobelspiesse@nasa.gov
Public Access Level public
Geographic Coverage <?xml version="1.0" encoding="UTF-8"?><gml:Polygon xmlns:gml="http://www.opengis.net/gml/3.2" srsName="EPSG:9825"><gml:outerBoundaryIs><gml:LinearRing><gml:posList>25.0 -130.0 25.0 -100.0 45.0 -100.0 45.0 -130.0 25.0 -130.0</gml:posList></gml:LinearRing></gml:outerBoundaryIs><gml:innerBoundaryIs></gml:innerBoundaryIs></gml:Polygon>
Temporal Applicability 2017-10-23T00:00:00Z/2017-11-09T23:59:59.999Z
Homepage ASDC | ACEPOL_AircraftRemoteSensing_RSP_Data_1
Issued 2020-03-27T00:00:00.000Z
Unique Identifier C1758588354-LARC_ASDC
Last Update 2022-04-08T00:00:00.000Z

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ACEPOL_AircraftRemoteSensing_RSP_Data",
    cloud_hosted=True,
    #bounding_box=(-165.68, 34.59, -98.1, 71.28),
    #temporal=("2017-07-20", "2017-08-08"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

2020-05-27. Archived by National Aeronautics and Space Administration, U.S. Government, NASA/LARC/SD/ASDC. https://doi.org/10.5067/SUBORBITAL/ACEPOL2017/AircraftRemoteSensing_RSP_Data_1.

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。