1982 年到 2018 年AVHRR - LTDR Pixel v1.1 产品包含全球烧毁面积的网格数据

举报
此星光明 发表于 2024/04/05 16:34:46 2024/04/05
【摘要】  简介欧空局火灾扰动气候变化倡议(CCI)欧空局火灾扰动气候变化倡议(CCI)项目通过卫星观测绘制了全球烧毁面积地图。这里介绍的 AVHRR - LTDR Pixel v1.1 产品包含全球烧毁面积的网格数据,这些数据来自美国国家航空航天局制作的 AVHRR(高级甚高分辨率辐射计)陆地长期数据记录 (LTDR) v5 数据集的光谱信息。该数据集以 0.05 度的空间分辨率(AVHRR-LTD...

 简介

欧空局火灾扰动气候变化倡议(CCI)
欧空局火灾扰动气候变化倡议(CCI)项目通过卫星观测绘制了全球烧毁面积地图。这里介绍的 AVHRR - LTDR Pixel v1.1 产品包含全球烧毁面积的网格数据,这些数据来自美国国家航空航天局制作的 AVHRR(高级甚高分辨率辐射计)陆地长期数据记录 (LTDR) v5 数据集的光谱信息。

该数据集以 0.05 度的空间分辨率(AVHRR-LTDR 输入数据的分辨率)提供了从 1982 年到 2018 年全球焚烧面积的月度信息。由于 1994 年的输入数据不足,因此省略了这一年。数据集以月度 GeoTIFF 文件格式发布,打包成年度 tar.gz 文件,其中包括 5 个文件:BA 检测日期(标注为 JD)、置信度标签(CL)、每个像素的烧毁面积(BA)、当月观测次数(OB)和一个元数据文件。有关产品及其格式的详细信息,请参阅《产品用户指南》。您可以从以下链接下载数据集

该 BA 产品的空间分辨率为 0.05 度,与 AVHRR-LTDR 输入数据的分辨率相同。

像素产品的详细信息

像素产品由 5 个文件组成:

JD.tif:烧毁区域的首次探测日
CL.tif:烧毁区域检测的置信度
BA.tif:烧毁面积,与计算出的烧毁像素比例相对应。
OB.tif:观测次数,即该月观测到该像元的次数。
xml:产品的元数据

像素属性汇总

Attribute Units Data Type Notes
Date of the first detection (JD) Day of the year (1-366) Float - 0: Not burned - 1-366: Day of first detection for burned pixel - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Confidence level (CL) 0-100 Float - 0: Low burn probability - 1-100: Increasing burn probability confidence - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Burned Area (BA) Square meters Float - 0-N: Burned area within pixel cell - -1: Not observed in month - -2: Not burnable (water, bare land, urban, snow/ice)
Number of observations (OB) 0-31 Int16 - 0-31: No-cloud observations in pixel - 0: Not observed - -2: Not burnable (water, bare land, urban, snow/ice)

代码

var BA = ee.ImageCollection("projects/sat-io/open-datasets/ESA/AVHRR-LTDR/BA"),
    CL = ee.ImageCollection("projects/sat-io/open-datasets/ESA/AVHRR-LTDR/CL"),
    JD = ee.ImageCollection("projects/sat-io/open-datasets/ESA/AVHRR-LTDR/JD"),
    OB = ee.ImageCollection("projects/sat-io/open-datasets/ESA/AVHRR-LTDR/OB");

//Setup basemaps
var snazzy = require("users/aazuspan/snazzy:styles");
snazzy.addStyle("https://snazzymaps.com/style/132/light-gray", "Grayscale");

/*
| Attribute | Units | Data Type | Notes |
|---|---|---|---|
| Date of the first detection (JD) | Day of the year (1-366) | Float |  - 0: Not burned - 1-366: Day of first detection for burned pixel  - -1: Not observed in month  - -2: Not burnable (water, bare land, urban, snow/ice) |
| Confidence level (CL) | 0-100 | Float | - 0: Low burn probability  - 1-100: Increasing burn probability confidence  - -1: Not observed in month  - -2: Not burnable (water, bare land, urban, snow/ice) |
| Burned Area (BA) | Square meters | Float | - 0-N: Burned area within pixel cell  - -1: Not observed in month  - -2: Not burnable (water, bare land, urban, snow/ice) |
| Number of observations (OB) | 0-31 | Int16 | - 0-31: No-cloud observations in pixel  - 0: Not observed  - -2: Not burnable (water, bare land, urban, snow/ice) |
*/

var BA_mosaic = BA.filterDate('2018-01-01','2018-12-31').mosaic()
var CL_mosaic = CL.filterDate('2018-01-01','2018-12-31').mosaic()
var OB_mosaic = OB.filterDate('2018-01-01','2018-12-31').mosaic()
var JD_mosaic = JD.filterDate('2018-01-01','2018-12-31').mosaic()

// Define color palettes
var BA_palette = ['#f07167','#fed9b7','#fdfcdc','#00afb9','#0081a7'];
var CL_palette = ['blue', 'green', 'yellow', 'orange', 'red'];
var OB_palette = ['#7f3b08','#b35806','#e08214','#fdb863','#fee0b6','#f7f7f7','#d8daeb','#b2abd2','#8073ac','#542788','#2d004b'];
var JD_palette = ['#9e0142','#d53e4f','#f46d43','#fdae61','#fee08b','#ffffbf','#e6f598','#abdda4','#66c2a5','#3288bd','#5e4fa2'];

// Add layers with color palettes
Map.addLayer(BA_mosaic.updateMask(BA_mosaic.gte(0)), {min: 0, max: 15000, palette: BA_palette}, 'Burned Area (BA)');
Map.addLayer(CL_mosaic.updateMask(CL_mosaic.gte(0)), {min: 0, max: 100, palette: CL_palette}, 'Confidence Level (CL)');
Map.addLayer(OB_mosaic.updateMask(OB_mosaic.gte(0)), {min: 0, max: 31, palette: OB_palette}, 'Number of observations (OB)');
Map.addLayer(JD_mosaic.updateMask(JD_mosaic.gte(0)), {min: 0, max: 366, palette: JD_palette}, 'Date of the first detection (JD)');

数据引用

Chuvieco, E.; Pettinari, M.L.; Otón, G. (2020): ESA Fire Climate Change Initiative (Fire_cci): AVHRR-LTDR Burned Area Pixel product, version 1.1.Centre for Environmental Data Analysis, 21 December 2020. doi:10.5285/b1bd715112ca43ab948226d11d72b85e. https://dx.doi.org/10.5285/b1bd715112ca43ab948226d11d72b85e

代码链接

https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:fire-monitoring-analysis/ESA-FIRE-DISTURBANCE-CCI

License


herehttp://licences.ceda.ac.uk/image/data_access_condition/esacci_fire_terms_and_conditions.pdf

Created by: Chuvieco, E.; Pettinari, M.L.; Otón, G, ESA

Curated in GEE by : Samapriya Roy

keywords: ESA, CCI, Pixel, Burned Area, Fire Disturbance, Climate Change, GCOS Essential Climate Variable

Last modified: 2020-12-21

Last updated on GEE: 2024-04-01

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg 

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。