基于Volterra级数的DFE判决反馈均衡器可见光通信系统误码率matlab仿真

举报
简简单单做算法 发表于 2024/04/04 21:38:26 2024/04/04
【摘要】 1.算法运行效果图预览2.算法运行软件版本matlab2022a 3.算法理论概述       Volterra级数是一种描述非线性系统行为的强大工具。在一个非线性系统中,输出信号y(t) 可以通过输入信号x(t) 的多个卷积和来表示,形成所谓的Volterra级数。第一阶Volterra核(线性部分)和高阶Volterra核(非线性部分)共同决定了系统的整体响应。对于一个非线性系统,其输出...

1.算法运行效果图预览

1.jpeg

2.jpeg

2.算法运行软件版本

matlab2022a

 

3.算法理论概述

       Volterra级数是一种描述非线性系统行为的强大工具。在一个非线性系统中,输出信号y(t) 可以通过输入信号x(t) 的多个卷积和来表示,形成所谓的Volterra级数。第一阶Volterra核(线性部分)和高阶Volterra核(非线性部分)共同决定了系统的整体响应。对于一个非线性系统,其输出可以用以下形式的Volterra级数表示:

 

3.png

 

       其中,ℎ1h1​ 是一阶Volterra核,代表线性响应;ℎ2,3,...h2,h3,... 是二阶及更高阶的Volterra核,它们描述了系统的非线性特性;τ1,τ2,... 表示时间延迟。

 

判决反馈均衡器(Decision Feedback Equalizer, DFE)原理

        在通信系统中,判决反馈均衡器主要用于克服信道引起的码间干扰(ISI)。DFE包含两个主要部分:前馈均衡器(FFE)和反馈均衡器(FBF)。

 

        假设接收信号为r(t),经过FFE处理后的信号为rffe(t),则该信号进入判决器产生初步判决结果 x^(t)。然后将x^(t) 通过反馈均衡器与原始接收信号进行减法操作,得到最终均衡后信号 y^(t)

 

4.png

 

       在基于Volterra级数的DFE设计中,会利用Volterra级数对非线性失真进行建模,并在设计反馈均衡器时考虑这些非线性项的影响。

 

在可见光通信系统中的应用

       在可见光通信(VLC)系统中,由于光源的非线性特性、光电检测器的响应以及信道的多径效应等因素,可能导致严重的非线性失真和ISI问题。因此,可以采用基于Volterra级数的DFE技术来改善这些问题。

 

       数学模型(简化表达): 假设 VLC 系统的非线性失真可以通过高阶Volterra级数近似,那么针对接收到的信号r(t),均衡过程可描述为:

 

5.png

 

其中,hn​ 是第n Volterra核,N 是考虑的最高阶数。

 

       实际实现过程中,需要先通过实验或理论分析确定Volterra核的具体形式,然后将其应用于DFE的设计中,使得均衡器能够更好地抵消由非线性导致的失真,从而提高系统的误码率性能。

 

 

 

 

4.部分核心程序

        % 生成随机输入信号
        msg0    = randi([0,2^numberOfBits-1],maxRuns*2,1);
        % 使用PAM调制
        pilot   = real(pammod(msg0,2^numberOfBits,0,'gray'));
        % 计算卷积长度
        Cov_Len = length(pilot) + LEDfreqRespPoints -1;
        % 计算FFT的尺寸
        NFFT    = 2^nextpow2(Cov_Len);
        % 对调制信号进行FFT
        pilotFreq = fft(pilot,NFFT);
        % 生成频率向量
        f = fs/2*linspace(0,1,NFFT/2 + 1)*2*pi;
        % 生成对称频率向量
        w = [-fliplr(f(2:end-1)) f];
        % 计算LED的频率响应
        LEDResp = func_LEDfreq(w);
        % 对信号进行滤波
        msg_filter = real(ifft(pilotFreq.*fftshift(LEDResp))); 
        % 修剪滤波后的信号
        filteredVin = msg_filter(1:length(pilot));
        % 计算电压常数
        VoltageConstant = Modn_idx*maxVoltage/((1+Modn_idx)*max(filteredVin));
        % 调整信号电压
        filteredVin = filteredVin*VoltageConstant + VDC;
        % 计算LED输出电流    
        iLEDOutput = func_IV(filteredVin,Uvt,Nled,ISat);
        % 计算电功率
        Pow_out = filteredVin.*iLEDOutput;
        % 计算光功率
        Opt_Pow_out = Poptical(Eff_led,Pow_out,kNonLinearity);
        % 计算光功率的卷积输出
        Opt_Pow_cout = Opt_Pow_out*H_0;
        % 生成噪声信号
        n = randn(length(Opt_Pow_cout),1); 
        % 计算接收到的电流信号
        Rec_Isignal = Opt_Pow_cout*R*A;
        % 去直流分量
        Rec_ac = Rec_Isignal - mean(Rec_Isignal);
        % 计算信号功率
        Rec_pow = Rec_ac'*Rec_ac/length(Rec_Isignal);
        % 计算噪声功率
        Pow_noise = n'*n/(length(n));
        % 计算所需的噪声功率
        powerNoise = (Rec_pow/db2pow(SNR));
        % 调整噪声信号的功率
        n = n.*sqrt(powerNoise/Pow_noise);
        % 添加噪声到接收信号
        Rec_voltages = (Rec_Isignal + n);
        % 去直流分量
        Rec_voltages = Rec_voltages - mean(Rec_voltages);
        % 调整接收信号的方差
        receivedVoltageSignal =  Rec_voltages*sqrt(var(pilot)/var(Rec_voltages));
        % 准备信号向量
        xAux = [zeros(N-1,1);receivedVoltageSignal];
        % 初始化权重矩阵
        w = zeros(adapFiltLength,maxRuns);
        % 初始化期望信号矩阵
        d = zeros(maxRuns + delayinSamples + 1,1);
        % 初始化误差信号矩阵
        e = zeros(maxRuns + delayinSamples + 1,1);
        % 对每个时间步
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。