基于yolov2深度学习网络的视频手部检测算法matlab仿真

举报
简简单单做算法 发表于 2024/03/17 22:35:18 2024/03/17
【摘要】 1.算法运行效果图预览输入mp4格式的视频文件进行测试,视频格式为1080p@30.2.算法运行软件版本matlab2022a  3.算法理论概述          近年来,深度学习在计算机视觉领域取得了显著成果,特别是在目标检测任务中。YOLO(You Only Look Once)系列算法作为其中的代表,以其高效和实时的性能受到广泛关注。YOLOv2,作为YOLO的改进版,通过一系列优化...

1.算法运行效果图预览

输入mp4格式的视频文件进行测试,视频格式为1080p@30.


1.jpeg

2.jpeg

3.jpeg




2.算法运行软件版本

matlab2022a

 

 

3.算法理论概述

          近年来,深度学习在计算机视觉领域取得了显著成果,特别是在目标检测任务中。YOLOYou Only Look Once)系列算法作为其中的代表,以其高效和实时的性能受到广泛关注。YOLOv2,作为YOLO的改进版,通过一系列优化策略,进一步提升了检测精度和速度。

 

YOLOv2网络结构

 

       YOLOv2的网络结构主要由三部分组成:Darknet-19特征提取网络、多尺度预测和锚框(anchor boxes)机制。

 

Darknet-19

 

      Darknet-19是一个包含19个卷积层和5个最大池化层的深度卷积神经网络,用于从输入图像中提取特征。与VGG等网络相比,Darknet-19具有更少的计算量和更高的性能。

 

多尺度预测

 

       YOLOv2采用了多尺度预测策略,通过在不同尺度的特征图上进行检测,提高了对不同大小目标的检测能力。具体来说,网络将输入图像划分为SxS的网格,每个网格预测B个锚框,每个锚框预测目标的边界框(bounding box)、置信度(confidence score)和类别概率(class probabilities)。

 

锚框机制

 

        YOLOv2引入了锚框机制,通过预设一组不同大小和宽高比的锚框,使得网络更容易学习目标的形状。在训练过程中,网络通过计算锚框与真实边界框的交并比(IoU)来确定正样本和负样本,从而进行有监督的学习。

 

训练策略

 

       YOLOv2的训练策略包括多尺度训练、批量归一化、高分辨率分类器微调等。这些策略有助于提高网络的泛化能力和检测精度。

 

多尺度训练

 

      多尺度训练是指在网络训练过程中,不断改变输入图像的尺寸,使得网络能够适应不同大小的目标。这种策略有助于提高网络的鲁棒性和泛化能力。

 

批量归一化

 

      批量归一化是一种有效的正则化技术,通过在每个批量的数据上进行归一化处理,减少了网络对初始权重的敏感性,加速了网络的收敛速度。

 

高分辨率分类器微调

 

      YOLOv2首先在ImageNet数据集上预训练一个高分辨率的分类器,然后在检测任务上进行微调。这种策略使得网络能够更好地提取图像特征,从而提高检测精度。

 

 

 

4.部分核心程序

figure;
for i = 1:numFramesToRead
    i
    img     = readFrame(reader); % 从视频流中读取当前帧
    [R,C,K] = size(img);
    KK1     = R/img_size(1);
    KK2     = C/img_size(2);
    tmps1   = [];
    tmps2   = [];
 
    I               = imresize(img,img_size(1:2));
    [bboxes,scores] = detect(detector,I,'Threshold',0.15);
    bboxes2 = bboxes;
    scores2 = scores;
    if isempty(scores)==0
       %对检测结果做二次优化
       %step1:删除置信度多低的识别区域
       idx=[];
       idx=find(scores<=lvlscore);
       bboxes(idx,:)=[];
       scores(idx)  =[];
       %step2:通过距离矩阵算法,将接近的多个识别框合并为一个识别区域
       xx =  bboxes(:,1);
       yy =  bboxes(:,2);
       dist =[];
       for j1 = 1:length(xx)
           for j2 = j1+1:length(xx)
               dist(j1,j2) = sqrt((xx(j1)-xx(j2))^2 + (yy(j1)-yy(j2))^2);
           end
       end
       
       bboxes2 = bboxes;
       scores2 = scores;
       if isempty(dist)==0;%如果只有一只手,且只检测到一个,则dist为空,那么不处理
          if size(dist,1)==1 & size(dist,2)==2 %检测到2个目标
             if dist(2)<lvl%判断为1只手 
                bboxes2 = []; 
                [scores2,II] = max(scores); 
 
                bboxes2 = bboxes(II,:);
                
             else%判断为两只手
                bboxes2 = bboxes;
                scores2 = scores;
             end
          else
             %通过kmeans聚类为两类
             idx = [];
             idx = kmeans(bboxes(:,1:2),2);
             i1  = find(idx==1);
             i2  = find(idx==2);
             [scoresa,IIa] = max(scores(i1)); 
             [scoresb,IIb] = max(scores(i2));  
 
             bboxes2 = [bboxes(i1(IIa),:);bboxes(i2(IIb),:)];
             scores2 = [scoresa;scoresb];
          end
       end
 
............................................................................
 
 
    
    imshow(I2, []);  % 显示带有检测结果的图像
 
 
    pause(1/60);
end
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。