2022 年美国毗连地区不同土地覆被和作物分类数据集

举报
此星光明 发表于 2024/03/09 21:14:10 2024/03/09
【摘要】 ​ 简介美国国家航空航天局(NASA)和国际商业机器公司(IBM)合作,利用大规模卫星和遥感数据,包括大地遥感卫星和哨兵-2 号(HLS)数据,创建了地球观测人工智能基础模型。通过奉行开放式人工智能和开放式科学的原则,两家机构都在积极为促进知识共享和加快创新以应对重大环境挑战的全球使命做出贡献。通过Hugging Face的平台,他们简化了地理空间模型的训练和部署,使开放科学用户、初创企业和...

 简介

美国国家航空航天局(NASA)和国际商业机器公司(IBM)合作,利用大规模卫星和遥感数据,包括大地遥感卫星和哨兵-2 号(HLS)数据,创建了地球观测人工智能基础模型。通过奉行开放式人工智能和开放式科学的原则,两家机构都在积极为促进知识共享和加快创新以应对重大环境挑战的全球使命做出贡献。通过Hugging Face的平台,他们简化了地理空间模型的训练和部署,使开放科学用户、初创企业和企业能够在watsonx等多云人工智能平台上使用这些模型。此外,Hugging Face 还能在社区内轻松共享模型系列(我们的团队称之为 Prithvi)的管道,促进全球合作和参与。有关 Prithvi 的更多详情,请参阅 IBM NASA 联合技术论文。

多时作物分类数据集

数据集摘要

本数据集包含 2022 年美国毗连地区不同土地覆被和作物类别的统一陆地卫星-圣天诺时空影像。目标标签来自美国农业部的作物数据层(CDL)。它的主要用途是训练分割地理空间机器学习模型。

数据集结构

TIFF 文件
每个 TIFF 文件覆盖 224 x 224 像素区域,空间分辨率为 30 米。每个输入卫星文件包含 18 个波段,其中包括三个时间步长叠加在一起的 6 个光谱波段。每个掩膜的 GeoTIFF 文件包含一个波段,每个像素包含目标类别。

Band Order

在每个输入的 GeoTIFF 中,以下波段在整个生长季节的三次观测中重复三次: 通道、名称、HLS S30 波段编号
1, Blue, B02
2, Green, B03
3, Red, B04
4, NIR, B8A
5, SW 1, B11
6, SW 2, B12

Masks are a single band with values:
0 : "No Data" 1 : "Natural Vegetation" 2 : "Forest" 3 : "Corn" 4 : "Soybeans" 5 : "Wetlands" 6 : "Developed/Barren" 7 : "Open Water" 8 : "Winter Wheat" 9 : "Alfalfa" 10 : "Fallow/Idle Cropland" 11 : "Cotton" 12 : "Sorghum" 13 : "Other"

训练数据分布

验证数据分布

数据分割

3 854 个瓦片被随机分成训练数据(80%)和验证数据(20%),相应的 ID 记录在 cvs 文件 train_data.txt 和 validation_data.txt 中。

数据集创建

查询和场景选择

首先,根据美国农业部 CDL 的样本定义了一组 5,000 个瓦片,以确保在整个美国有代表性。然后,对每个片段查询 2022 年 3 月至 9 月期间相应的 HLS S30 场景,并检索云量较少的场景。然后,在低云层场景中选择三个场景,以确保在季节早期、中期和末期各有一个场景。然后,使用双线性插值法将最终的三个场景重新投影到 CDL 的投影网格(EPSG:5070)上。


最后一步,将每个瓦片的三个场景剪切到瓦片的边界框内,并将 18 个光谱带堆叠在一起。此外,使用 HLS 数据集的 Fmask 层对每个瓦片进行质量控制。任何含有云层、云影、邻近云层或缺失值的芯片都会被丢弃。这样就得到了 3854 个瓦片。

数据集下载

您可以从该资源库下载 .tgz 格式的数据(需要安装Git Large File Sotrage)。相同版本的数据作为 AWS S3 上的对象托管在 Source Cooperative 上。

数据引用

@misc{hls-multi-temporal-crop-classification,
    author = {Cecil, Michael and Kordi, Fatemehand Li, Hanxi (Steve) and Khallaghi, Sam and Alemohammad, Hamed},
    doi    = {10.57967/hf/0955},
    month  = aug,
    title  = {{HLS Multi Temporal Crop Classification}},
    url    = {https://huggingface.co/ibm-nasa-geospatial/multi-temporal-crop-classification},
    year   = {2023}
}

 

网址推荐 

推荐两个网址一个是机器学习的另外一个是0代码地图应用创建

 Mapmost login

 前言 – 人工智能教程

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。