【数组篇】day05_396. 旋转函数
【摘要】 给定一个长度为 n 的整数数组 nums 。假设 arrk 是数组 nums 顺时针旋转 k 个位置后的数组,我们定义 nums 的 旋转函数 F 为:F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]返回 F(0), F(1), ..., F(n-1)中的最大值 。生成的测试用例让答案符合 32 位 整数。示例 1...
给定一个长度为 n
的整数数组 nums
。
假设 arrk
是数组 nums
顺时针旋转 k
个位置后的数组,我们定义 nums
的 旋转函数 F
为:
F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]
返回 F(0), F(1), ..., F(n-1)
中的最大值 。
生成的测试用例让答案符合 32 位 整数。
示例 1:
输入: nums = [4,3,2,6]
输出: 26
解释:
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。
示例 2:
输入: nums = [100]
输出: 0
提示:
n == nums.length
1 <= n <= 105
-100 <= nums[i] <= 100
【题解】
题解一:
思路:滑动窗口
复杂度:
- 时间复杂度:O(n)
- 空间复杂度:O(n)
class Solution {
public int maxRotateFunction(int[] nums) {
int n = nums.length;
int[] sum = new int[n * 2 + 10];
for (int i = 1; i <= 2 * n; i++) sum[i] = sum[i - 1] + nums[(i - 1) % n];
int ans = 0;
for (int i = 1; i <= n; i++) ans += nums[i - 1] * (i - 1);
for (int i = n + 1, cur = ans; i < 2 * n; i++) {
cur += nums[(i - 1) % n] * (n - 1);
cur -= sum[i - 1] - sum[i - n];
if (cur > ans) ans = cur;
}
return ans;
}
}
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)