【数组篇】day05_396. 旋转函数

举报
小林学算法丶 发表于 2024/03/01 18:14:46 2024/03/01
【摘要】 给定一个长度为 n 的整数数组 nums 。假设 arrk 是数组 nums 顺时针旋转 k 个位置后的数组,我们定义 nums 的 旋转函数  F 为:F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]返回 F(0), F(1), ..., F(n-1)中的最大值 。生成的测试用例让答案符合 32 位 整数。示例 1...

给定一个长度为 n 的整数数组 nums 。

假设 arrk 是数组 nums 顺时针旋转 k 个位置后的数组,我们定义 nums 的 旋转函数  F 为:

  • F(k) = 0 * arrk[0] + 1 * arrk[1] + ... + (n - 1) * arrk[n - 1]

返回 F(0), F(1), ..., F(n-1)中的最大值 

生成的测试用例让答案符合 32 位 整数。


示例 1:

输入: nums = [4,3,2,6]
输出: 26
解释:
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。

示例 2:

输入: nums = [100]
输出: 0

 

提示:

  • n == nums.length
  • 1 <= n <= 105
  • -100 <= nums[i] <= 100

【题解】

题解一:

思路:滑动窗口

复杂度:

  • 时间复杂度:O(n
  • 空间复杂度:O(n)
class Solution {
    public int maxRotateFunction(int[] nums) {
        int n = nums.length;
        int[] sum = new int[n * 2 + 10];
        for (int i = 1; i <= 2 * n; i++) sum[i] = sum[i - 1] + nums[(i - 1) % n];
        int ans = 0;
        for (int i = 1; i <= n; i++) ans += nums[i - 1] * (i - 1);
        for (int i = n + 1, cur = ans; i < 2 * n; i++) {
            cur += nums[(i - 1) % n] * (n - 1);
            cur -= sum[i - 1] - sum[i - n];
            if (cur > ans) ans = cur;
        }
        return ans;
    }
}
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。