基于自适应支持向量机的matlab建模与仿真,不使用matlab的SVM工具箱函数

举报
简简单单做算法 发表于 2024/02/27 19:13:52 2024/02/27
【摘要】 1.算法运行效果图预览2.算法运行软件版本matlab2022a 3.算法理论概述         支持向量机是一种二分类模型,它的基本思想是在特征空间中寻找一个超平面,使得该超平面能够最大化地将两类样本分隔开。这个超平面由支持向量确定,支持向量是离超平面最近的样本点。自适应支持向量机是标准支持向量机的一种扩展,它能够根据数据的分布自动调整超平面的位置,从而更好地适应数据的变化。ASVM的核...

1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

 

3.算法理论概述

         支持向量机是一种二分类模型,它的基本思想是在特征空间中寻找一个超平面,使得该超平面能够最大化地将两类样本分隔开。这个超平面由支持向量确定,支持向量是离超平面最近的样本点。自适应支持向量机是标准支持向量机的一种扩展,它能够根据数据的分布自动调整超平面的位置,从而更好地适应数据的变化。ASVM的核心思想是在SVM的基础上引入一个自适应因子,用于调整超平面的偏移量。

 

       ASVM中,自适应因子可以是一个与样本点位置相关的函数,用于动态地调整超平面的偏移量。这个函数可以根据不同的应用场景来设计,例如可以考虑样本点的密度、距离等因素。

 

        ASVM的求解过程与标准的SVM类似,可以采用拉格朗日乘子法将原问题转化为对偶问题,然后通过求解对偶问题得到原问题的解。具体的求解过程可以参考标准的SVM求解方法。需要注意的是,由于引入了自适应因子,ASVM的求解过程可能会比标准的SVM更加复杂。此外,如何设计合适的自适应因子也是ASVM研究的一个重要问题。

 

        ASVM在许多领域都有广泛的应用,例如文本分类、图像识别、生物信息学等。由于ASVM能够根据数据的分布自动调整超平面的位置,因此在处理不平衡数据、噪声数据等问题时具有一定的优势。

 

 

 

4.部分核心程序

figure;
subplot(131);
for i = 1:Class_Num
    %测试数据设置为1维,2维,或者3维,多维测试数据不方便观察
    Nums= 10+round(Num*rand(1))+1;
    Xo  = 3.2*floor((i+1)/2) + randn(1,Nums);
    Yo  = 3.2*mod(i,2)       + randn(1,Nums);
    Lo  = (2*(i-1)-1)*ones(1,Nums);
    Xt  = [Xt,Xo];
    Yt  = [Yt,Yo];  
    Lt  = [Lt,Lo];
    plot(Xo,Yo,colors{1});
    hold on;
end
title('原始数据');  
Test_Dat = [Xt;Yt]; 
Category = Lt;
axis square;
axis([-5,10,-5,10]);
 
 
%普通2SVM
%普通2SVM
subplot(132);
x       = Test_Dat;
y       = Category;
[w1,b1] = func_2svm(x,y);
title(['普通2SVM分类数据']);
axis square;
 
%论文算法的2SVM
%论文算法的2SVM
subplot(133);
x       = Test_Dat;
y       = Category;
[w2,b2] = func_2svm_new(x,y);
title(['改进2SVM分类数据']);
axis square;
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。