基于DCT变换的图像压缩解压缩算法matlab仿真

举报
简简单单做算法 发表于 2024/01/29 00:02:21 2024/01/29
【摘要】 1.算法运行效果图预览  2.算法运行软件版本MATLAB2022a 3.算法理论概述       基于DCT(离散余弦变换)的图像压缩与解压缩算法。我们深入探讨了DCT变换的原理、其在图像编码中的应用,并给出了相应的数学公式和算法实现细节。随着数字技术的快速发展,图像数据在日常生活中呈现爆炸性增长。因此,如何有效地压缩图像数据,同时确保良好的图像质量,成为了一个重要的研究课题。DCT变换由...

1.算法运行效果图预览

 

1.jpeg

2.jpeg

3.jpeg

4.jpeg

 

2.算法运行软件版本

MATLAB2022a

 

3.算法理论概述

       基于DCT(离散余弦变换)的图像压缩与解压缩算法。我们深入探讨了DCT变换的原理、其在图像编码中的应用,并给出了相应的数学公式和算法实现细节。随着数字技术的快速发展,图像数据在日常生活中呈现爆炸性增长。因此,如何有效地压缩图像数据,同时确保良好的图像质量,成为了一个重要的研究课题。DCT变换由于其良好的能量集中特性和与人类视觉系统的匹配度,被广泛应用于图像压缩标准中,如JPEG

 

3.1DCT变换原理

      离散余弦变换(DCT)是傅里叶变换的一种变种。它将信号从时域变换到频域,使得信号的能量大部分集中在几个频率分量上。对于图像而言,DCT可以有效地将图像的能量集中在左上角的低频部分。

 

一维DCT变换公式如下:

 

 

      二维DCT变换(通常用于图像处理)可以通过两次一维DCT变换实现,首先对行进行变换,再对列进行变换。

 

 

        可以发现,二维DCT变换其实是在一维DCT变换的基础上,再做一次一维DCT变换。二维DCT也可以写成矩阵相乘的形式:

 

         二维DCT变换的复杂度达到O(n^4),所以进行DCT变换的矩阵不宜过大。在实际处理图片的过程中,需要先把矩阵分块,一般分为8x816x16大小,这样DCT变换不至于耗费过多的时间。

 

3.2、基于DCT的图像压缩

基于DCT的图像压缩主要步骤如下:

 

分块:将原始图像分为8x816x16的小块。

DCT变换:对每个小块进行二维DCT变换。

量化:使用预定的量化表对DCT系数进行量化,这一步骤是有损的,会丢失部分信息。

编码:采用Zig-Zag扫描将量化后的系数排列为一维序列,并使用霍夫曼编码进行进一步压缩。

通过以上的步骤,我们可以实现图像的压缩。需要注意的是,量化步骤是有损的,因此解压后的图像与原始图像会存在一定的差异。

 

3.3、基于DCT的图像解压缩

解压缩是压缩的逆过程,主要包括以下步骤:

 

解码:使用霍夫曼解码对编码后的数据流进行解码。

反量化:使用与压缩时相同的量化表对解码后的数据进行反量化。

DCT变换:对反量化后的数据进行二维反DCT变换。

重构:将反DCT变换后的块组合成完整的图像。

 

 

 

 

4.部分核心程序

%调用8x8矩阵的量化等级  
load Q10.mat
 
% 对R、G、B通道应用压缩函数func_ys,得到压缩后的图像Rys、Gys、Bys  
Rys  = func_ys(R1,Coff_dct,Q_dct,Bsize);
Gys  = func_ys(G1,Coff_dct,Q_dct,Bsize);
Bys  = func_ys(B1,Coff_dct,Q_dct,Bsize);
 
% 将压缩后的通道数据合并成一个新的图像I1ys  
I1ys(:,:,1) = Rys;
I1ys(:,:,2) = Gys;
I1ys(:,:,3) = Bys;
imwrite(I1ys,'TMPS\Iys.jpg');% 将图像I1ys写入到文件'TMPS\Iys.jpg'中  
 
% 对压缩后的图像应用解压缩函数func_deys,得到解压缩后的图像Rdeys、Gdeys、Bdeys  
Rdeys        = func_deys(Rys,Coff_dct,Q_dct,Bsize);
Gdeys        = func_deys(Gys,Coff_dct,Q_dct,Bsize);
Bdeys        = func_deys(Bys,Coff_dct,Q_dct,Bsize);
% 将解压缩后的通道数据合并成一个新的图像I2deys,并转换为uint8类型  
I2deys(:,:,1) = uint8(Rdeys);
I2deys(:,:,2) = uint8(Gdeys);
I2deys(:,:,3) = uint8(Bdeys);
imwrite(I2deys,'TMPS\Ideys.jpg');% 将图像I2deys写入到文件'TMPS\Ideys.jpg'中  
 
 
 
% 获取原始图像文件和压缩后的图像文件的大小(字节) 
 
%压缩率
ys_rate = SIZE1/SIZE2;
 
% 显示三个图像:压缩后的图像、解压后的图像、原始图像  
figure(1)
subplot(131)
imshow(I1ys);
title('压缩图像')
subplot(132)
imshow(I2deys);
title('解压图像')
subplot(133)
imshow(I0);
title('原始图像')
 
 
I00 = imread('TMPS\Ideys.jpg');
err = (double(I0) - double(I00)) .^ 2;
mse1= sum(err(:)) / (64*64); 
%PSNR 
Max_pixel = 255;
PSNR      = 20*log10((Max_pixel^2)./sqrt(mse1));
 
 
save R1.mat ys_rate PSNR
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。