SpringBoot整合Kafka简单配置实现生产消费

举报
王二蛋! 发表于 2024/01/25 21:05:14 2024/01/25
【摘要】 *本文基于SpringBoot整合Kafka,通过简单配置实现生产及消费,包括生产消费的配置说明、消费者偏移设置方式等。更多功能细节可参考spring kafka 文档:https://docs.spring.io/spring-kafka/docs/current/reference/html 前提条件搭建Kafka环境,参考Kafka集群环境搭建及使用Java环境:JDK1.8Maven...

*本文基于SpringBoot整合Kafka,通过简单配置实现生产及消费,包括生产消费的配置说明、消费者偏移设置方式等。更多功能细节可参考

spring kafka 文档:https://docs.spring.io/spring-kafka/docs/current/reference/html

前提条件

项目环境

  1. 创建Springboot项目。
  2. pom.xml文件中引入kafka依赖。
<dependencies>
        <dependency>
            <groupId>org.springframework.kafka</groupId>
            <artifactId>spring-kafka</artifactId>
        </dependency>
</dependencies>

创建Topic

创建topic命名为testtopic并指定2个分区。

./kafka-topics.sh --bootstrap-server 127.0.0.1:9092 --create --topic testtopic --partitions 2

配置信息

application.yml配置文件信息

spring:
  application:
    name: kafka_springboot
  kafka:
    bootstrap-servers: 127.0.0.1:9092
    producer:
      #ACK机制,默认为1 (0,1,-1)
      acks: -1
      key-serializer: org.apache.kafka.common.serialization.StringSerializer
      value-serializer: org.apache.kafka.common.serialization.StringSerializer
      properties:
        # 自定义分区策略
        partitioner:
          class: org.bg.kafka.PartitionPolicy

    consumer:
      #设置是否自动提交,默认为true
      enable-auto-commit: false
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      #当一个新的消费组或者消费信息丢失后,在哪里开始进行消费。earliest:消费最早的消息。latest(默认):消费最近可用的消息。none:没有找到消费组消费数据时报异常。
      auto-offset-reset: latest
      #批量消费时每次poll的数量
      #max-poll-records: 5
    listener:
      #      当每一条记录被消费者监听器处理之后提交
      #      RECORD,
      #      当每一批数据被消费者监听器处理之后提交
      #      BATCH,
      #      当每一批数据被消费者监听器处理之后,距离上次提交时间大于TIME时提交
      #      TIME,
      #      当每一批数据被消费者监听器处理之后,被处理record数量大于等于COUNT时提交
      #      COUNT,
      #      #TIME | COUNT 有一个条件满足时提交
      #      COUNT_TIME,
      #      #当每一批数据被消费者监听器处理之后,手动调用Acknowledgment.acknowledge()后提交:
      #      MANUAL,
      #      # 手动调用Acknowledgment.acknowledge()后立即提交
      #      MANUAL_IMMEDIATE;
      ack-mode: manual
      #批量消费
      type: batch

更多配置信息查看KafkaProperties

生产消息

@Component
public class Producer {
    @Autowired
    private KafkaTemplate kafkaTemplate;

    public void send(String msg) {
        kafkaTemplate.send(new ProducerRecord<String, String>("testtopic", "key111", msg));
    }
}

生产自定义分区策略

package org.bg.kafka;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.PartitionInfo;
import org.apache.kafka.common.utils.Utils;

import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.atomic.AtomicInteger;

public class PartitionPolicy implements Partitioner {

    private final ConcurrentMap<String, AtomicInteger> topicCounterMap = new ConcurrentHashMap();

    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
        int numPartitions = partitions.size();
        if (keyBytes == null) {
            int nextValue = this.nextValue(topic);
            List<PartitionInfo> availablePartitions = cluster.availablePartitionsForTopic(topic);
            if (availablePartitions.size() > 0) {
                int part = Utils.toPositive(nextValue) % availablePartitions.size();
                return ((PartitionInfo)availablePartitions.get(part)).partition();
            } else {
                return Utils.toPositive(nextValue) % numPartitions;
            }
        } else {
            return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
        }
    }


    private int nextValue(String topic) {
        AtomicInteger counter = (AtomicInteger)this.topicCounterMap.get(topic);
        if (null == counter) {
            counter = new AtomicInteger(ThreadLocalRandom.current().nextInt());
            AtomicInteger currentCounter = (AtomicInteger)this.topicCounterMap.putIfAbsent(topic, counter);
            if (currentCounter != null) {
                counter = currentCounter;
            }
        }

        return counter.getAndIncrement();
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> map) {

    }
}

生产到指定分区

ProducerRecord有指定分区的构造方法,设置分区号
public ProducerRecord(String topic, Integer partition, K key, V value)

kafkaTemplate.send(new ProducerRecord<String, String>("testtopic",1, "key111", msg));

消费消息


/**
 * 自定义seek参考
 * https://docs.spring.io/spring-kafka/docs/current/reference/html/#seek
 */
@Component
public class Consumer implements ConsumerSeekAware{


    @KafkaListener(topics = {"testtopic"},groupId = "test_group",clientIdPrefix = "bg",id = "testconsumer")
    public void onMessage(List<ConsumerRecord<String, String>> records, Acknowledgment ack){
        System.out.println(records.size());
        System.out.println(records.toString());
        ack.acknowledge();
    }


    @Override
    public void onPartitionsAssigned(Map<TopicPartition, Long> assignments, ConsumerSeekCallback callback) {
        //按照时间戳设置偏移
        callback.seekToTimestamp(assignments.keySet(),1670233826705L);
        //设置偏移到最近
        callback.seekToEnd(assignments.keySet());
        //设置偏移到最开始
        callback.seekToBeginning(assignments.keySet());
        //指定 offset
        for (TopicPartition topicPartition : assignments.keySet()) {
            callback.seek(topicPartition.topic(),topicPartition.partition(),0L);
        }

    }

}

offset设置方式

如代码所示,实现ConsumerSeekAware接口,设置offset几种方式:

  • 指定 offset,需要自己维护 offset,方便重试。
  • 指定从头开始消费。
  • 指定 offset 为最近可用的 offset (默认)。
  • 根据时间戳获取 offset,设置 offset。

代码仓库

https://gitee.com/codeWBG/learn_kafka

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。