【字典树 Trie】208. 实现 Trie (前缀树)
【摘要】 【题目】Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。请你实现 Trie 类:Trie() 初始化前缀树对象。void insert(String word) 向前缀树中插入字符串 word 。boolean search(String word) 如果字符串 word 在前...
【题目】
Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
Trie()
初始化前缀树对象。void insert(String word)
向前缀树中插入字符串word
。boolean search(String word)
如果字符串word
在前缀树中,返回true
(即,在检索之前已经插入);否则,返回false
。boolean startsWith(String prefix)
如果之前已经插入的字符串word
的前缀之一为prefix
,返回true
;否则,返回false
。
示例:
输入
["Trie", "insert", "search", "search", "startsWith", "insert", "search"]
[[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]]
输出
[null, null, true, false, true, null, true]
解释
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // 返回 True
trie.search("app"); // 返回 False
trie.startsWith("app"); // 返回 True
trie.insert("app");
trie.search("app"); // 返回 True
【题解】
题解1:
- 思路
- 复杂度
时间复杂度:O(n2),空间复杂度:O(n)
- 代码
class Trie:
def __init__(self):
self.children = [None] * 26
self.isEnd = False
def searchPrefix(self, prefix: str) -> "Trie":
node = self
for ch in prefix:
ch = ord(ch) - ord("a")
if not node.children[ch]:
return None
node = node.children[ch]
return node
def insert(self, word: str) -> None:
node = self
for ch in word:
ch = ord(ch) - ord("a")
if not node.children[ch]:
node.children[ch] = Trie()
node = node.children[ch]
node.isEnd = True
def search(self, word: str) -> bool:
node = self.searchPrefix(word)
return node is not None and node.isEnd
def startsWith(self, prefix: str) -> bool:
return self.searchPrefix(prefix) is not None
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)