基于Alexnet深度学习网络的人员口罩识别算法matlab仿真

举报
简简单单做算法 发表于 2023/11/17 15:56:32 2023/11/17
【摘要】 1.算法运行效果图预览 2.算法运行软件版本matlab2022a 3.算法理论概述       人员口罩识别算法是一种基于深度学习的图像分类问题。在这个问题中,我们需要在图像中检测并识别出人员是否佩戴口罩。为了解决这个问题,我们可以使用AlexNet模型,它是一种深度学习网络,广泛应用于图像识别任务。 AlexNet模型          AlexNet是一个深度学习网络,由两个部分组成:...

1.算法运行效果图预览

 

2.算法运行软件版本

matlab2022a

 

3.算法理论概述

       人员口罩识别算法是一种基于深度学习的图像分类问题。在这个问题中,我们需要在图像中检测并识别出人员是否佩戴口罩。为了解决这个问题,我们可以使用AlexNet模型,它是一种深度学习网络,广泛应用于图像识别任务。

 

AlexNet模型

 

         AlexNet是一个深度学习网络,由两个部分组成:共享层和特定任务层。共享层包括5个卷积层(conv1conv5)和3个全连接层(fc6fc7fc8)。特定任务层包括一个用于分类的softmax层(fc8)和用于位置回归的fc6-fc7-fc8 layersAlexNet使用ReLU作为激活函数,使用dropout来防止过拟合,使用L2正则化来增强模型的泛化能力。

 

人员口罩识别算法

 

       我们可以将AlexNet模型应用于人员口罩识别的任务。首先,我们需要收集一个包含人员戴口罩和未戴口罩的图像的数据集。然后,我们使用AlexNet模型对图像进行训练和测试。

 

         在训练阶段,我们将输入图像和相应的标签(戴口罩或未戴口罩)送入AlexNet模型。模型的输出是一个概率值,表示该图像为戴口罩或未戴口罩的概率。我们使用交叉熵损失函数和随机梯度下降(SGD)优化器来更新模型参数,以最小化预测值和实际值之间的差异。

 

        在测试阶段,我们将输入图像送入已经训练好的AlexNet模型,并输出预测结果。如果预测结果大于某个阈值,我们将其判定为戴口罩;否则,我们将其判定为未戴口罩。

 

以下是AlexNet模型的一些核心公式:

 

卷积层的输出尺寸计算公式:O=(IF+2P)/S+1,其中I是输入尺寸,F是卷积核尺寸,Ppadding尺寸,S是步长。

ReLU激活函数的公式:f(x)=max(0,x)

交叉熵损失函数的公式:L=−∑i=1Nyilog(yi^)+(1yi)log(1yi^),其中N是样本数量,y是真实标签,y^​是预测标签。

SGD优化器的公式:θ=θ−η∇L(θ),其中θ是参数,η是学习率,∇L(θ)是损失函数的梯度。

        深度学习模型的工作原理是通过学习从输入到输出的映射关系。在这个过程中,模型会学习到一些有用的特征表示,从而能够更好地理解和预测输入数据的性质。在人员口罩识别任务中,AlexNet模型通过学习从图像到戴口罩或未戴口罩的概率的映射关系,从而能够准确地识别出人员是否佩戴口罩。

 

 

 

4.部分核心程序

file_path1    =  'test\mask\';% 图像文件夹路径  
 
%获取测试图像文件夹下所有jpg格式的图像文件
img_path_list = dir(strcat(file_path1,'*.png'));
idx=0;%初始化索引
for i = 1:20%对每张测试图像进行预测并可视化
    idx           = idx+1; %索引+1
    II            = imread([file_path1,img_path_list(i).name]);%读取测试图像
    II            = imresize(II,[227 227]);%将测试图像大小缩放为预训练模型的输入大小
    Features      = activations(net,II,featureLayer,'OutputAs','rows'); %提取测试图像的特征
    II2           = predict(classifier,Features);%使用分类器对测试图像进行分类
    subplot(4,10,idx) %在第一行的左侧位置显示测试图像和分类结果
    disp(char(II2));%输出测试图像的分类结果
    imshow(II); %显示测试图像
    title(char(II2));%显示测试图像的分类结果
end
 
 
file_path1    =  'test\no mask\';% 图像文件夹路径  
img_path_list = dir(strcat(file_path1,'*.png'));%获取测试图像文件夹下所有jpg格式的图像文件
 
for i = 1:20%对每张测试图像进行预测并可视化
    idx           = idx+1;%索引+1
    II            = imread([file_path1,img_path_list(i).name]); %读取测试图像
    II            = imresize(II,[227 227]);%将测试图像大小缩放为预训练模型的输入大小
    Features      = activations(net,II,featureLayer,'OutputAs','rows');%提取测试图像的特征
    II2           = predict(classifier,Features); %使用分类器对测试图像进行分类
    subplot(4,10,idx)%在第一行的右侧位置显示测试图像和分类结果
    disp(char(II2)); %输出测试图像的分类结果
    imshow(II);%显示测试图像
    title(char(II2));%显示测试图像的分类结果
end
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。