mapreduce wordcount与spark wordcount

举报
yd_280631054 发表于 2023/11/15 11:24:21 2023/11/15
【摘要】 求1:统计一堆文件中单词出现的个数(WordCount案例)0)需求:在一堆给定的文本文件中统计输出每一个单词出现的总次数1)数据准备:Hello.txthello worlddog fishhadoop sparkhello worlddog fishhadoop sparkhello worlddog fishhadoop spark2)分析按照mapreduce编程规范,分别编写Map...

求1:统计一堆文件中单词出现的个数(WordCount案例)

0)需求:在一堆给定的文本文件中统计输出每一个单词出现的总次数

1)数据准备:Hello.txt

复制代码
hello world
dog fish
hadoop 
spark
hello world
dog fish
hadoop 
spark
hello world
dog fish
hadoop 
spark

2)分析

按照mapreduce编程规范,分别编写Mapper,Reducer,Driver。

3)编写程序

(1)定义一个mapper类

复制代码
package com.xyg.wordcount;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

/**
 * KEYIN:默认情况下,是mr框架所读到的一行文本的起始偏移量,Long;
 * 在hadoop中有自己的更精简的序列化接口,所以不直接用Long,而是用LongWritable
 * VALUEIN:默认情况下,是mr框架所读到的一行文本内容,String;此处用Text
 * KEYOUT:是用户自定义逻辑处理完成之后输出数据中的key,在此处是单词,String;此处用Text
 * VALUEOUT,是用户自定义逻辑处理完成之后输出数据中的value,在此处是单词次数,Integer,此处用IntWritable
 * @author Administrator
 */
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
    /**
     * map阶段的业务逻辑就写在自定义的map()方法中
     * maptask会对每一行输入数据调用一次我们自定义的map()方法
     */
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

        // 1 将maptask传给我们的文本内容先转换成String
        String line = value.toString();
        
        // 2 根据空格将这一行切分成单词
        String[] words = line.split(" ");
        
        // 3 将单词输出为<单词,1>
        for(String word:words){
            // 将单词作为key,将次数1作为value,以便于后续的数据分发,可以根据单词分发,以便于相同单词会到相同的reducetask中
            context.write(new Text(word), new IntWritable(1));
        }
    }

(2)定义一个reducer类

复制代码
package com.xyg.wordcount;

import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

/**
 * KEYIN , VALUEIN 对应mapper输出的KEYOUT, VALUEOUT类型
 * KEYOUT,VALUEOUT 对应自定义reduce逻辑处理结果的输出数据类型 KEYOUT是单词 VALUEOUT是总次数
 */
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {

    /**
     * key,是一组相同单词kv对的key
     */
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {

        int count = 0;

        // 1 汇总各个key的个数
        for(IntWritable value:values){
            count +=value.get();
        }
        
        // 2输出该key的总次数
        context.write(key, new IntWritable(count));
    }
}

3)定义一个主类,用来描述job并提交job

复制代码
package com.xyg.wordcount;

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * 相当于一个yarn集群的客户端,
 * 需要在此封装我们的mr程序相关运行参数,指定jar包
 * 最后提交给yarn
 * @author Administrator
 */
public class WordcountDriver {
    public static void main(String[] args) throws Exception {
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        // 8 配置提交到yarn上运行,windows和Linux变量不一致
//        configuration.set("mapreduce.framework.name", "yarn");
//        configuration.set("yarn.resourcemanager.hostname", "node22");
        Job job = Job.getInstance(configuration);
        
        // 6 指定本程序的jar包所在的本地路径
//        job.setJar("/home/admin/wc.jar");
        job.setJarByClass(WordcountDriver.class);
        
        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(WordcountMapper.class);
        job.setReducerClass(WordcountReducer.class);
        
        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        
        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        
        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
//        job.submit();
        boolean result = job.waitForCompletion(true);
        System.exit(result?0:1);
    }
}

4)集群上测试

(1)将程序打成jar包,然后拷贝到hadoop集群中。

(2)启动hadoop集群

(3)执行wordcount程序

[admin@node21 module]$ hadoop jar  wc.jar com.xyg.wordcount.WordcountDriver /user/admin/input /user/admin/output

                                                          //////用yarn jar运行刚刚的程序, 参考:yarn jar WordCount-1.0-SNAPSHOT.jar com.huawei.WordCount /tmp/train/wordcount/in/words.txt /wordcount/out

5)本地测试

(1)在windows环境上配置HADOOP_HOME环境变量。

(2)在eclipse上运行程序

(3)注意:如果eclipse打印不出日志,在控制台上只显示

1.log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).  
2.log4j:WARN Please initialize the log4j system properly.  
3.log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.

需要在项目的src目录下,新建一个文件,命名为“log4j.properties”,在文件中填入

复制代码
log4j.rootLogger=INFO, stdout  
log4j.appender.stdout=org.apache.log4j.ConsoleAppender  
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout  
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n  
log4j.appender.logfile=org.apache.log4j.FileAppender  
log4j.appender.logfile.File=target/spring.log  
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout  
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n  

编写spark wordcount代码并打包

代码:

import org.apache.spark.SparkConf;

import org.apache.spark.api.java.JavaPairRDD;

import org.apache.spark.api.java.JavaRDD;

import org.apache.spark.api.java.JavaSparkContext;

import scala.Tuple2;

import java.util.Arrays;

public class JavaLambdaWordCount {

    public static void main(String[] args) {

        if (args.length != 2) {

            System.out.println("Usage:clw.spark.day01.ScalaWordCount    <srcPath>,<desPath>");

            System.exit(-1);

        }

        //创建SparkContext

        SparkConf javaLambdaWordCount = new SparkConf().setAppName("JavaLambdaWordCount").setMaster("local[*]");

        JavaSparkContext jsc = new JavaSparkContext(javaLambdaWordCount);

        //指定以后从哪里读取数据

        JavaRDD<String> data = jsc.textFile(args[0]);

        //切分压平

        JavaRDD<String> words = data.flatMap(line -> Arrays.asList(line.split(",")).iterator());

        //将单词和1组合

        JavaPairRDD<String, Integer> wordAndOne = words.mapToPair(w -> new Tuple2<>(w, 1));

        //聚合

        JavaPairRDD<String, Integer> reduced = wordAndOne.reduceByKey((m, n) -> m + n);

        //调换顺序

        JavaPairRDD<Integer, String> swaped = reduced.mapToPair(re -> re.swap());

        //排序

        JavaPairRDD<Integer, String> sorted = swaped.sortByKey(false);

        //调换顺序

        JavaPairRDD<String, Integer> result = sorted.mapToPair(so -> so.swap());

        //将结果存入指定的文件

        result.saveAsTextFile(args[1]);

        jsc.stop();

    }

}

 

用yarn-client模式运行代码

参考:spark-submit --class com.huawei.RDD --master yarn-client SPARKRDD-1.0-SNAPSHOT.jar com.huawei.WordCount /tmp/train/wordcount/in/words.txt /wordcount/out

复制代码
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。