从零开始学习线性回归:理论、实践与PyTorch实现

举报
小馒头学Python 发表于 2023/11/05 10:29:30 2023/11/05
【摘要】 🥦介绍线性回归是统计学和机器学习中最简单而强大的算法之一,用于建模和预测连续性数值输出与输入特征之间的关系。本博客将深入探讨线性回归的理论基础、数学公式以及如何使用PyTorch实现一个简单的线性回归模型。🥦基本知识线性回归的数学基础线性回归的核心思想是建立一个线性方程,它表示了自变量(输入特征)与因变量(输出)之间的关系。这个线性方程通常表示为:其中,y yy 是因变量,x 1 , x...

🥦介绍

线性回归是统计学和机器学习中最简单而强大的算法之一,用于建模和预测连续性数值输出与输入特征之间的关系。本博客将深入探讨线性回归的理论基础、数学公式以及如何使用PyTorch实现一个简单的线性回归模型。

🥦基本知识

线性回归的数学基础
线性回归的核心思想是建立一个线性方程,它表示了自变量(输入特征)与因变量(输出)之间的关系。这个线性方程通常表示为:
y=b0+b1x1+b2x2+…+bpxp
y=b0​+b1​x1​+b2​x2​+…+bp​xp​

其中,y yy 是因变量,x 1 , x 2 , … , x p x_1, x_2, \ldots, x_px1,x2,,xp 是自变量,b 0 , b 1 , b 2 , … , b p b_0, b_1, b_2, \ldots, b_pb0,b1,b2,,bp 是模型的参数,p pp 是特征的数量。我们的目标是找到最佳的参数值,以最小化模型的误差。

损失函数
为了找到最佳参数,我们需要定义一个损失函数来度量模型的性能。在线性回归中,最常用的损失函数是均方误差(MSE),它表示了模型预测值与实际值之间的平方差的平均值:
在这里插入图片描述
其中,n nn 是样本数量,y i y_iyi 是实际值,y ^ i \hat{y}_iy^i 是模型的预测值。

梯度下降优化
为了最小化损失函数,我们使用梯度下降算法。梯度下降通过计算损失函数相对于参数的梯度,并迭代地更新参数,以减小损失。更新规则如下:
在这里插入图片描述
其中,b j b_jbj 是第j jj个参数,α \alphaα 是学习率,∂ ∂ b j M S E \frac{\partial}{\partial b_j} MSEbjMSE 是损失函数对参数b j b_jbj的偏导数。

🥦代码实现

如果你想知道实现线性回归的大体步骤,下图可以充分进行说明
在这里插入图片描述

  • 准备数据
  • 设计模型(计算)y ^ i \hat{y}_iy^i
  • 构造损失和优化器
  • 训练周期(前向,反向 ,更新)

本节还是以刘二大人的视频讲解为例,结尾会设置传送门

class LinearModel(torch.nn.Module):
	def __init__(self):
		super(LinearModel, self).__init__() # 调用父类的构造函数
		self.linear = torch.nn.Linear(1, 1)  # 参数详情下图展示
	def forward(self, x):
		y_pred = self.linear(x)   # x代表输入样本的张量
		return y_pred
model = LinearModel()

所以模型类都要继承Module,此类主要包含两个函数一个是构造函数(初始化对象时调用),另一个是前向计算

好奇的小伙伴会思考为何没有反向(backward),这是因为Module会帮你进行,但是如果后期自己有更高效的方法可以自行设置。
在这里插入图片描述

  • 第一个参数 in_features:这是输入特征的数量。在这里,表示我们的模型只有一个输入特征。如果你有多个输入特征,你可以将这个参数设置为输入特征的数量。

  • 第二个参数 out_features:这是输出特征的数量。这表示我们的模型将生成一个输出。在线性回归中,通常只有一个输出,因为我们试图预测一个连续的数值。

  • 第三个参数:意思是要不要偏置量。默认true

通常情况下特征代表列,比如我们有一个n×2的y和一个n×3的x,那么我们需要一个3×2的权重,有的书中会在两边做转置,但无论咋样目的都是为了让这个矩阵乘法成立

criterion = torch.nn.MSELoss(size_average=False)  # 使用均方误差损失 
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 使用随机梯度下降优化器

在这里插入图片描述
在这里插入图片描述
model.parameters() 用于告诉优化器哪些参数需要在训练过程中进行更新,这包括模型的权重和偏置项等。在线性回归示例中,模型的参数包括权重和偏置项。

优化器的选择有许多大家可以都试试看看
在这里插入图片描述

之后就进行训练了

for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data) 
    print(epoch, loss.item())
    optimizer.zero_grad()   # 归零
    loss.backward()  # 反向
    optimizer.step()  # 更新
print('w = ', model.linear.weight.item()) 
print('b = ', model.linear.bias.item())
x_test = torch.Tensor([[4.0]]) 
y_test = model(x_test)
print('y_pred = ', y_test.data)

🥦完整代码

x_data = torch.Tensor([[1.0], [2.0], [3.0]]) 
y_data = torch.Tensor([[2.0], [4.0], [6.0]])
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__() 
        self.linear = torch.nn.Linear(1, 1)
    def forward(self, x):
        y_pred = self.linear(x) 
        return y_pred
model = LinearModel()
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data) 
    print(epoch, loss.item())
    optimizer.zero_grad() 
    loss.backward()
    optimizer.step()
print('w = ', model.linear.weight.item()) 
print('b = ', model.linear.bias.item())
x_test = torch.Tensor([[4.0]]) 
y_test = model(x_test)
print('y_pred = ', y_test.data)
predicted = model(x_data).detach().numpy()
plt.scatter(x_data, y_data, label='Original data')
plt.plot(x_data, predicted, label='Fitted line', color='r')
plt.legend()
plt.show()

运行结果如下
在这里插入图片描述

在这里插入图片描述

🥦总结

在本篇博客中,我们使用PyTorch实现了一个简单的线性回归模型,并使用随机生成的数据对其进行了训练和可视化。线性回归是一个入门级的机器学习模型,但它为理解模型训练和预测的基本概念提供了一个很好的起点。

请添加图片描述

挑战与创造都是很痛苦的,但是很充实。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。