基于Qlearning强化学习的路径规划算法matlab仿真

举报
简简单单做算法 发表于 2023/10/10 23:27:00 2023/10/10
【摘要】 1.算法运行效果图预览 2.算法运行软件版本MATLAB2022A  3.算法理论概述        路径规划在机器人、自动驾驶等领域中具有重要应用。Q-learning是一种经典的强化学习算法,可以用于解决路径规划问题。本文介绍了基于Q-learning的路径规划算法,该算法可以在未知环境中学习最优路径,具有广泛的应用前景。Q-learning是一种基于值函数的强化学习算法,用于学习最优策...

1.算法运行效果图预览

1.jpeg

2.jpeg

3.jpeg

 

2.算法运行软件版本

MATLAB2022A

 

 

3.算法理论概述

        路径规划在机器人、自动驾驶等领域中具有重要应用。Q-learning是一种经典的强化学习算法,可以用于解决路径规划问题。本文介绍了基于Q-learning的路径规划算法,该算法可以在未知环境中学习最优路径,具有广泛的应用前景。Q-learning是一种基于值函数的强化学习算法,用于学习最优策略。在路径规划问题中,状态(State)表示机器人所处的位置,动作(Action)表示机器人可以采取的移动方向,奖励(Reward)表示机器人根据采取的动作获得的反馈。Q-learning的目标是学习一个Q值函数,用于评估在给定状态下采取某个动作的预期回报。

 

3.1 Q值更新规则

在每个时间步,Q-learning根据以下更新规则更新Q值:

 

 

3.2 基于Q-learning的路径规划算法设计

       在路径规划中,状态可以表示机器人所处的位置坐标,动作可以表示机器人可以向上、下、左、右等方向移动。将Q值初始化为一个小的随机值或零。

 

 

      可以通过逐渐减小学习率和折扣因子,或者使用不同的策略来调优算法,以实现更好的性能和收敛性。

 

3.3 Q-learning路径规划流程

 

 

        基于Q-learning的路径规划算法可以在未知环境中学习最优路径,具有广泛的应用前景。通过合理的参数设置和调优,可以实现高效的路径规划。

 

 

 

4.部分核心程序

[T,crowd,flow,R] = Update_M(T,crowd,flow,width,dis,cor,XY1);
last_s           = XYs;
[Q,XYs]          = qlearning(Q,R,XYs,XY1);
Reward0          = Reward0 + R(last_s,XYs);
figure;
plot(Rewards,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
 
grid on
xlabel('迭代次数');
ylabel('奖励值');
 
 
figure;
plot(path,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on
grid on
xlabel('迭代次数');
ylabel('路线变化');
【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。