go语言基础类型

举报
未来日记 发表于 2023/09/14 14:51:47 2023/09/14
【摘要】 变量Go 是静态类型语⾔,不能在运⾏期改变变量类型。使⽤关键字 var 定义变量,⾃动初始化为零值。如果提供初始化值,可省略变量类型,由编译器⾃动推断。 var声明变量的一般形式是使用 var 关键字: var identifier type 。var x intvar f float32 = 1.6var s = "abc" :=在函数内部,可⽤更简略的 “:=” ⽅式定义变量,func...

变量

Go 是静态类型语⾔,不能在运⾏期改变变量类型。
使⽤关键字 var 定义变量,⾃动初始化为零值。如果提供初始化值,可省略变量类型,由编译器⾃动推断。

var

声明变量的一般形式是使用 var 关键字: var identifier type 。

var x int
var f float32 = 1.6
var s = "abc"

:=

在函数内部,可⽤更简略的 “:=” ⽅式定义变量,

func main() {
	x := 123
	n, s := 0x1234, "Hello, World!"
	b := 123
	b := 1234 //会出现错误no new variables on left side of := 。因为在上一行已经定义过变量
	println(x, n, s, b)
}


变量赋值

多变量赋值时,先计算所有相关值,然后再从左到右依次赋值。

data, i := [3]int{0, 1, 2}, 0 
i, data[i] = 2, 100 // (i = 0) -> (i = 2), (data[0] = 100) 

特殊只写变量 “_”,⽤于忽略值占位。

func test() (int, string) {
 return 1, "abc"
}
func main() {
 _, s := test()
 println(s)
}

注意
在go语言中交换两个变量的值十分容易,不需要像c语言中定义一个中间量

i,j = j,i

匿名变量 “_”

我们在使用传统的强类型语言编程时,经常会出现这种情况,即在调用函数时为了获取一个值,却因为该函数返回多个值而不得不定义一堆没用的变量。在Go中这种情况可以通过结合使用多重返回和匿名变量来避免这种丑陋的写法,让代码看起来更加优雅。
而且,在go语言中编译器会将未使⽤的局部变量当做错误,为了避免这种情况必须用匿名变量进行占位。

var s string // 全局变量没问题。
func GetName() (firstName, lastName, nickName string) { 
 return "May", "Chan", "Chibi Maruko" 
} 

func main() {

//若只想获得nickName,则函数调用语句可以用如下方式编写:
 _, _, nickName := GetName() 
 i := 0 // Error: i declared and not used。(可使⽤ "_ = i" 进行占位)
}

注意重新赋值与定义新同名变量的区别

s := "abc"
println(&s)
s, y := "hello", 20 // 重新赋值: 与前 s 在同⼀层次的代码块中,且有新的变量被定义。
println(&s, y) // 通常函数多返回值 err 会被重复使⽤。
{
 s, z := 1000, 30 // 定义新同名变量: 不在同⼀层次代码块。
 println(&s, z)
}

输出:
0x2210230f30
0x2210230f30 20
0x2210230f18 30

常量

注意大写字母开头的常量在包外可见,否则只在本包内可见。

常量定义

常量值必须是编译期可确定的数字、字符串、布尔值。

const x, y int = 1, 2 // 多常量初始化
const s = "Hello, World!" // 类型推断
const ( // 常量组
 a, b = 10, 100
 c bool = false
)
func main() {
 const x = "xxx" // 未使⽤局部常量不会引发编译错误。
}

在常量组中,如不提供类型和初始化值,那么视作与上⼀常量相同。

const (
 s = "abc"
 x // x = "abc"
)

常量值还可以是 len、cap、unsafe.Sizeof 等编译期可确定结果的函数返回值。

const (
 a = "abc"
 b = len(a)
 c = unsafe.Sizeof(b)
)

预定义常量

Go语言预定义了这些常量:true、false和iota。
iota比较特殊,可以被认为是一个可被编译器修改的常量,在每一个const关键字出现时被重置为0,然后在下一个const出现之前,每出现一次iota,其所代表的数字会自动增1。从以下的例子可以基本理解iota的用法:

const ( // iota被重设为0
 c0 = iota // c0 == 0 
 c1 = iota // c1 == 1 
 c2 = iota // c2 == 2 
) 
const ( 
 a = 1 << iota // a == 1 (iota在每个const开头被重设为0) 
 b = 1 << iota // b == 2 
 c = 1 << iota // c == 4 
) 
const ( 
 u = iota * 42 // u == 0 
 v float64 = iota * 42 // v == 42.0 
 w = iota * 42 // w == 84 
) 
const x = iota // x == 0 (因为iota又被重设为0了) 
const y = iota // y == 0 (同上) 

如果两个const的赋值语句的表达式是一样的,那么可以省略后一个赋值表达式。因此,上
面的前两个const语句可简写为:

const ( // iota被重设为0
 c0 = iota // c0 == 0 
 c1 // c1 == 1 
 c2 // c2 == 2 
) 
const ( 
 a = 1 <<iota // a == 1 (iota在每个const开头被重设为0) 
 b // b == 2 
 c // c == 4

枚举

const (
 Sunday = iota // 0
 Monday // 1,通常省略后续⾏表达式。
 Tuesday // 2
 Wednesday // 3
 Thursday // 4
 Friday // 5
 Saturday // 6
)

可通过⾃定义类型来实现枚举类型限制。

type Color int
const (
 Black Color = iota
 Red
 Blue
)
func test(c Color) {}
func main() {
 c := Black
 test(c)
 x := 1
 test(x) // Error: cannot use x (type int) as type Color in function argument
 test(1) // 常量会被编译器⾃动转换。
}

基本类型

Go语言内置以下这些基础类型:
 布尔类型:bool。
 整型:int8、byte、int16、int、uint、uintptr等。
 浮点类型:float32、float64。
 复数类型:complex64、complex128。
 字符串:string。
 字符类型:rune。
 错误类型:error。
此外,Go语言也支持以下这些复合类型:
 指针(pointer)
 数组(array)
 切片(slice)
 字典(map)
 通道(chan)
 结构体(struct)
 接口(interface)

在这些基础类型之上Go还封装了下面这几种类型:int、uint和uintptr等。这些类型的
特点在于使用方便,但使用者不能对这些类型的长度做任何假设。对于常规的开发来说,用int和uint就可以了,没必要用int8之类明确指定长度的类型,以免导致移植困难。

布尔类型

Go语言中的布尔类型与其他语言基本一致,关键字也为bool,可赋值为预定义的true和
false示例代码如下:

var v1 bool
v1 = true
v2 := (1 == 2) // v2也会被推导为bool类型

布尔类型不能接受其他类型的赋值,不支持自动或强制的类型转换。以下的示例是一些错误的用法,会导致编译错误:

var b bool
b = 1 // 编译错误
b = bool(1) // 编译错误
//以下的用法才是正确的:
var b bool
b = (1!=0) // 编译正确 
fmt.Println("Result:", b) // 打印结果为Result: true 

整型

整型是所有编程语言里最基础的数据类型。

类 型 长度(字节) 值 范 围
int8 1 128 ~ 127
uint8(即byte) 1 0 ~ 255
int16 2 32 768 ~ 32 767
uint16 2 0 ~ 65 535
int32 4 -2147 483 648 ~ 2 147 483 647
uint32 4 0 ~ 4 294 967 295
int64 8 9 223 372 036 854 775 808 ~ 9 223 372 036 854 775 807
uint64 8 0 ~ 18 446 744 073 709 551 615
int 平台相关 平台相关
uint 平台相关 平台相关
uintptr 同指针 在32位平台下为4字节,64位平台下为8字节

需要注意的是,int和int32在Go语言里被认为是两种不同的类型,编译器也不会帮你自动
做类型转换,比如以下的例子会有编译错误:

var value2 int32
value1 := 64 // value1将会被自动推导为int类型
value2 = value1 // 编译错误

编译错误类似于:

cannot use value1 (type int) as type int32 in assignment。

使用强制类型转换可以解决这个编译错误:

value2 = int32(value1) // 编译通过

当然,在做强制类型转换时,需要注意数据长度被截短而发生的数据精度损失(比如
将浮点数强制转为整数)和值溢出(值超过转换的目标类型的值范围时)问题。

数值运算

Go语言支持下面的常规整数运算:+、-、*、/和%。加减乘除就不详细解释了,需要说下的是,% 和在C语言中一样是求余运算,比如:

5 % 3 // 结果为:2 
  1. 比较运算
    Go语言支持以下的几种比较运算符:>、<、==、>=、<=和!=。这一点与大多数其他语言相同,与C语言完全一致。
    下面为条件判断语句的例子:
i, j := 1, 2 
if i == j { 
 fmt.Println("i and j are equal.") 
} 

两个不同类型的整型数不能直接比较,比如int8类型的数和int类型的数不能直接比较,但
各种类型的整型变量都可以直接与字面常量(literal)进行比较,比如:

var i int32
var j int64
i, j = 1, 2 
if i == j { // 编译错误
 fmt.Println("i and j are equal.") 
} 
if i == 1 || j == 2 { // 编译通过
 fmt.Println("i and j are equal.") 
} 

位运算

运 算 含 义 样 例
x << y 左移 124 << 2 // 结果为496
x >> y 右移 124 >> 2 // 结果为31
x ^ y 异或 124 ^ 2 // 结果为126
x & y 与 124 & 2 // 结果为0
x | y 124
^x 取反 ^2 // 结果为-3

Go语言的大多数位运算符与C语言都比较类似,除了取反在C语言中是~x,而在Go语言中是^x。

浮点型

浮点型用于表示包含小数点的数据,比如1.234就是一个浮点型数据。

浮点数表示

Go语言定义了两个类型float32和float64,其中float32等价于C语言的float类型,
float64等价于C语言的double类型。
在Go语言里,定义一个浮点数变量的代码如下:

var fvalue1 float32
fvalue1 = 12 
fvalue2 := 12.0 // 如果不加小数点,fvalue2会被推导为整型而不是浮点型

浮点数比较

因为浮点数不是一种精确的表达方式,所以像整型那样直接用==来判断两个浮点数是否相等是不可行的,这可能会导致不稳定的结果。
下面是一种推荐的替代方案:

import "math" 
// p为用户自定义的比较精度,比如0.00001 
func IsEqual(f1, f2, p float64) bool { 
 return math.Fdim(f1, f2) < p 
} 

复数类型

复数实际上由两个实数(在计算机中用浮点数表示)构成,一个表示实部(real),一个表示虚部(imag)。如

复数表示

复数表示的示例如下:

var value1 complex64 // 由2个float32构成的复数类型
value1 = 3.2 + 12i 
value2 := 3.2 + 12i // value2是complex128类型
value3 := complex(3.2, 12) // value3结果同 value2 

实部与虚部

对于一个复数z = complex(x, y),就可以通过Go语言内置函数real(z)获得该复数的实
部,也就是x,通过imag(z)获得该复数的虚部,也就是y。

字符串

在Go语言中,字符串也是一种基本类型。相比之下, C/C++语言中并不存在原生的字符串类型,通常使用字符数组来表示,并以字符指针来传递。
Go语言中字符串的声明和初始化非常简单,举例如下:

str = "Hello world" // 字符串赋值
ch := str[0] // 取字符串的第一个字符
fmt.Printf("The length of \"%s\" is %d \n", str, len(str)) 
fmt.Printf("The first character of \"%s\" is %c.\n", str, ch) 

输出结果为:

The length of “Hello world” is 11
The first character of “Hello world” is H.

字符串的内容可以用类似于数组下标的方式获取,但与数组不同,字符串的内容不能在初始化后被修改,比如以下的例子:

str := "Hello world" // 字符串也支持声明时进行初始化的做法
str[0] = 'X' // 编译错误

编译器会报类似如下的错误:
cannot assign to str[0]
保存源文件时请注意编码格式必须选择UTF-8。特别是在Windows下一般编辑器都默认存为本地编码,比如中国地区可能是GBK编码而不是UTF-8,如果没注意这点在编译和运行时就会出现一些意料之外的情况。

字符串操作

运 算 含 义 样 例
x + y 字符串连接 “Hello” + “qwe” // 结果为Helloqwe
len(s) 字符串长度 len(“Hello”) // 结果为5
s[i] 取字符 “Hello” [1] // 结果为’e’

字符串遍历

Go语言支持两种方式遍历字符串。一种是以字节数组的方式遍历:

str := "Hello,世界"
n := len(str) 
for i := 0; i < n; i++ { 
 ch := str[i] // 依据下标取字符串中的字符,类型为byte 
 fmt.Println(i, ch) 
} 

这个例子的输出结果为:
0 72
1 101
2 108
3 108
4 111
5 44
6 32
7 228
8 184
9 150
10 231
11 149
12 140
可以看出,这个字符串长度为13。尽管从直观上来说,这个字符串应该只有9个字符。这是因为每个中文字符在UTF-8中占3个字节,而不是1个字节。
另一种是以Unicode字符遍历:

str := "Hello,世界"
for i, ch := range str { 
 fmt.Println(i, ch)//ch的类型为rune 
} 

输出结果为:
0 72
1 101
2 108
3 108
4 111
5 44
6 32
7 19990
10 30028

字符类型

在Go语言中支持两个字符类型,一个是byte(实际上是uint8的别名),代表UTF-8字符串的单个字节的值

数组

数组是Go语言编程中最常用的数据结构之一。顾名思义,数组就是指一系列同一类型数据的集合。数组中包含的每个数据被称为数组元素(element),一个数组包含的元素个数被称为数组的长度。
以下为一些常规的数组声明方法:

[32]byte // 长度为32的数组,每个元素为一个字节
[2*N] struct { x, y int32 } // 复杂类型数组
[1000]*float64 // 指针数组
[3][5]int // 二维数组
[2][2][2]float64 // 等同于[2]([2]([2]float64)) 

在Go语言中,数组长度在定义后就不可更改,在声明时长度可以为一个常量或者一个常量表达式(常量表达式是指在编译期即可计算结果的表达式)。数组的长度是该数组类型的一个内置常量,可以用Go语言的内置函数len()来获取。下面是一个获取数组arr元素个数的写法:
``go
arrLength := len(arr)

### 元素访问
可以使用数组下标来访问数组中的元素。与大多数语言相同,数组下标从0开始,len(array)-1则表示最后一个元素的下标。下面的示例遍历整型数组并逐个打印元素内容:
```go
for i := 0; i < len(array); i++ { 
 fmt.Println("Element", i, "of array is", array[i]) 
} 

Go语言还提供了一个关键字range,用于便捷地遍历容器中的元素。上面的遍历过程可以简化为如下的写法:

for i, v := range array { 
 fmt.Println("Array element[", i, "]=", v) 
} 

在上面的例子里可以看到,range具有两个返回值,第一个返回值是元素的数组下标,第二个返回值是元素的值。

值类型

需要特别注意的是,在Go语言中数组是一个值类型(value type)。所有的值类型变量在赋值和作为参数传递时都将产生一次复制动作。如果将数组作为函数的参数类型,则在函数调用时该参数将发生数据复制。因此,在函数体中无法修改传入的数组的内容,因为函数内操作的只是所传入数组的一个副本。
下面用例子来说明这一特点:

package main 
import "fmt" 
func modify(array [10]int) { 
 array[0] = 10 // 试图修改数组的第一个元素
 fmt.Println("In modify(), array values:", array) 
} 
func main() { 
 array := [5]int{1,2,3,4,5} // 定义并初始化一个数组
 modify(array) // 传递给一个函数,并试图在函数体内修改这个数组内容
 fmt.Println("In main(), array values:", array) 
} 

该程序的执行结果为:
In modify(), array values: [10 2 3 4 5]

数组切片

数组的长度在定义之后无法再次修改;数组是值类型,
每次传递都将产生一份副本。Go语言提供了数组切片(slice)这个非常酷的功能来弥补数组的不足。数组切片就像一个指向数组的指针,实际上它拥有自己的数据结构,而不仅仅是个指针。数组切片的数据结构可以抽象为以下3个变量:
 一个指向原生数组的指针;
 数组切片中的元素个数;
 数组切片已分配的存储空间。
从底层实现的角度来看,数组切片实际上仍然使用数组来管理元素.基于数组,数组切片添加了一系列管理功能,可以随时动态扩充存放空间,并且可以被随意传递而不会导致所管理的元素被重复复制。

创建数组切片

创建数组切片的方法主要有两种——基于数组和直接创建,下面我们来简要介绍一下这两种方法。
基于数组
数组切片可以基于一个已存在的数组创建。数组切片可以只使用数组的一部分元素或者整个数组来创建,甚至可以创建一个比所基于的数组还要大的数组切片。代码清单2-1演示了如何基
于一个数组的前5个元素创建一个数组切片。

package main 
import "fmt" 
func main() { 
 // 先定义一个数组
 var myArray [10]int = [10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 
 // 基于数组创建一个数组切片
 var mySlice []int = myArray[:5] 
 fmt.Println("Elements of myArray: ") 
 for _, v := range myArray { 
 fmt.Print(v, " ") 
 } 
 fmt.Println("\nElements of mySlice: ") 
 for _, v := range mySlice { 
 fmt.Print(v, " ") 
 } 
 fmt.Println() 
} 

运行结果为:
Elements of myArray:
1 2 3 4 5 6 7 8 9 10
Elements of mySlice:
1 2 3 4 5
读者应该已经注意到,Go语言支持用myArray[first:last]这样的方式来基于数组生成一
个数组切片,而且这个用法还很灵活,比如下面几种都是合法的。
基于myArray的所有元素创建数组切片:
mySlice = myArray[:]
基于myArray的前5个元素创建数组切片:
mySlice = myArray[:5]
基于从第5个元素开始的所有元素创建数组切片:
mySlice = myArray[5:]
直接创建
Go语言提供的内置函数make()可以用于灵活地创建数组切片。下面的例子示范了直接创建数组切片的各种方法。

//创建一个初始元素个数为5的数组切片,元素初始值为0:
mySlice1 := make([]int, 5) 
//创建一个初始元素个数为5的数组切片,元素初始值为0,并预留10个元素的存储空间:
mySlice2 := make([]int, 5, 10) 
//直接创建并初始化包含5个元素的数组切片:
mySlice3 := []int{1, 2, 3, 4, 5} 

元素遍历

操作数组元素的所有方法都适用于数组切片,比如数组切片也可以按下标读写元素,用len()函数获取元素个数,并支持使用range关键字来快速遍历所有元素。


for i := 0; i <len(mySlice); i++ { 
 fmt.Println("mySlice[", i, "] =", mySlice[i]) 
} 
//使用range关键字可以让遍历代码显得更整洁。range表达式有两个返回值,第一个是索引,第二个是元素的值:
for i, v := range mySlice { 
 fmt.Println("mySlice[", i, "] =", v) 
} 

动态增减元素

可动态增减元素是数组切片比数组更为强大的功能。与数组相比,数组切片多了一个存储能力(capacity)的概念,即元素个数和分配的空间可以是两个不同的值。合理地设置存储能力的值,可以大幅降低数组切片内部重新分配内存和搬送内存块的频率,从而大大提高程序性能。
假如你明确知道当前创建的数组切片最多可能需要存储的元素个数为50,那么如果你设置的存储能力小于50,比如20,那么在元素超过20时,底层将会发生至少一次这样的动作——重新分配一块“够大”的内存,并且需要把内容从原来的内存块复制到新分配的内存块,这会产生比较明显的开销。
数组切片支持Go语言内置的cap()函数和len()函数,cap()函数返回的是数组切片分配的空间大小,而len()函数返回的是数组切片中当前所存储的元素个数。

package main 
import "fmt" 
func main() { 
 mySlice := make([]int, 5, 10) 
 fmt.Println("len(mySlice):", len(mySlice)) 
 fmt.Println("cap(mySlice):", cap(mySlice)) 
} 

该程序的输出结果为:
len(mySlice): 5
cap(mySlice): 10
如果需要往上例中mySlice已包含的5个元素后面继续新增元素,可以使用append()函数。
下面的代码可以从尾端给mySlice加上3个元素,从而生成一个新的数组切片:

mySlice = append(mySlice, 1, 2, 3) 
``
函数append()的第二个参数其实是一个不定参数,我们可以按自己需求添加若干个元素,甚至直接将一个数组切片追加到另一个数组切片的末尾:
```go
mySlice2 := []int{8, 9, 10} 
// 给mySlice后面添加另一个数组切片
mySlice = append(mySlice, mySlice2...) 

需要注意的是,我们在第二个参数mySlice2后面加了三个点,即一个省略号,如果没有这个省略号的话,会有编译错误,因为按append()的语义,从第二个参数起的所有参数都是待附加的元素。因为mySlice中的元素类型为int,所以直接传递mySlice2是行不通的。加上省略号相当于把mySlice2包含的所有元素打散后传入。
上述调用等同于:

mySlice = append(mySlice, 8, 9, 10) 

数组切片会自动处理存储空间不足的问题。如果追加的内容长度超过当前已分配的存储空间(即cap()调用返回的信息),数组切片会自动分配一块足够大的内存。

基于数组切片创建数组切片

类似于数组切片可以基于一个数组创建,数组切片也可以基于另一个数组切片创建。下面的
例子基于一个已有数组切片创建新数组切片:

oldSlice := []int{1, 2, 3, 4, 5} 
newSlice := oldSlice[:3] // 基于oldSlice的前3个元素构建新数组切片

有意思的是,选择的oldSlicef元素范围甚至可以超过所包含的元素个数,比如newSlice
可以基于oldSlice的前6个元素创建,虽然oldSlice只包含5个元素。只要这个选择的范围不超过oldSlice存储能力(即cap()返回的值),那么这个创建程序就是合法的。newSlice中超出oldSlice元素的部分都会填上0。

内容复制

数组切片支持Go语言的另一个内置函数copy(),用于将内容从一个数组切片复制到另一个数组切片。如果加入的两个数组切片不一样大,就会按其中较小的那个数组切片的元素个数进行复制。下面的示例展示了copy()函数的行为:

slice1 := []int{1, 2, 3, 4, 5} 
slice2 := []int{5, 4, 3} 
copy(slice2, slice1) // 只会复制slice1的前3个元素到slice2中
copy(slice1, slice2) // 只会复制slice2的3个元素到slice1的前3个位置

map

在Go中,使用map不需要引入任何库,并且用起来也更加方便。map是一堆键值对的未排序集合。比如以身份证号作为唯一键来标识一个人的信息,则这个

package main 
import "fmt" 
// PersonInfo是一个包含个人详细信息的类型
type PersonInfo struct { 
 ID string
 Name string
 Address string
} 
func main() { 
var personDB map[string] PersonInfo 
 personDB = make(map[string] PersonInfo) 
 // 往这个map里插入几条数据
 personDB["12345"] = PersonInfo{"12345", "Tom", "Room 203,..."} 
 personDB["1"] = PersonInfo{"1", "Jack", "Room 101,..."} 
 // 从这个map查找键为"1234"的信息
 person, ok := personDB["1234"] 

 // ok是一个返回的bool型,返回true表示找到了对应的数据
 if ok { 
 fmt.Println("Found person", person.Name, "with ID 1234.") 
 } else { 
 fmt.Println("Did not find person with ID 1234.") 
 } 
}

上面这个简单的例子基本上已经覆盖了map的主要用法,下面对其中的关键点进行细述。

变量声明

map的声明基本上没有多余的元素,比如:
var myMap map[string] PersonInfo 其中,myMap是声明的map变量名,string是键的类型,PersonInfo则是其中所存放的值类型。

创建

我们可以使用Go语言内置的函数make()来创建一个新map。下面的这个例子创建了一个键
类型为string、值类型为PersonInfo的map:

myMap = make(map[string] PersonInfo) 

也可以选择是否在创建时指定该map的初始存储能力,下面的例子创建了一个初始存储能力为100的map:

myMap = make(map[string] PersonInfo, 100) 

创建并初始化map的代码如下:

myMap = map[string] PersonInfo{ 
 "1234": PersonInfo{"1", "Jack", "Room 101,..."}, 
} 

元素赋值

赋值过程非常简单明了,就是将键和值用下面的方式对应起来即可:

myMap["1234"] = PersonInfo{"1", "Jack", "Room 101,..."} 

元素删除

Go语言提供了一个内置函数delete(),用于删除容器内的元素。下面我们简单介绍一下如
何用delete()函数删除map内的元素:

delete(myMap, "1234") 

上面的代码将从myMap中删除键为“1234”的键值对。如果“1234”这个键不存在,那么这个调用将什么都不发生,也不会有什么副作用。但是如果传入的map变量的值是nil,该调用将导致程序抛出异常(panic)。

元素查找

在Go语言中,map的查找功能设计得比较精巧。在Go语言中,要从map中查找一个特定的键,可以通过下面的代码来实现:

value, ok := myMap["1234"] 
if ok { // 找到了
 // 处理找到的value 
} 

判断是否成功找到特定的键,不需要检查取到的值是否为nil,只需查看第二个返回值ok,这让表意清晰很多。配合:=操作符,让你的代码没有多余成分,看起来非常清晰易懂。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。