ATC模型转换动态

举报
程序员123辅导费 发表于 2023/09/07 22:13:07 2023/09/07
【摘要】 ATC(Ascend Tensor Compiler)是异构计算架构CANN体系下的模型转换工具:它可以将开源框架的网络模型(如TensorFlow等)以及Ascend IR定义的单算子描述文件转换为昇腾AI处理器支持的离线模型;模型转换过程中,ATC会进行算子调度优化、权重数据重排、内存使用优化等具体操作,对原始的深度学习模型进行进一步的调优,从而满足部署场景下的高性能需求,使其能够高效执...

ATC(Ascend Tensor Compiler)是异构计算架构CANN体系下的模型转换工具:它可以将开源框架的网络模型(如TensorFlow等)以及Ascend IR定义的单算子描述文件转换为昇腾AI处理器支持的离线模型;模型转换过程中,ATC会进行算子调度优化、权重数据重排、内存使用优化等具体操作,对原始的深度学习模型进行进一步的调优,从而满足部署场景下的高性能需求,使其能够高效执行在昇腾AI处理器上。

本期就分享几个关于ATC模型转换动态shape相关问题的典型案例,并给出原因分析及解决方法:

  1. 原始网络模型shape中存在不固定的维度值,模型转换未设置shape信息
  2. 动态BatchSize/动态分辨率/动态维度场景,只设置一个档位,模型转换失败
  3. 使用动态batchsize参数转模型时,其他档位设置了-1,模型转换失败
  4. 使用动态分辨率参数转模型时,其他档位设置了-1,模型转换失败

01 原始网络模型shape中存在不固定的维度值,模型转换未设置shape信息

问题现象描述

获取原始网络模型,执行如下命令进行模型转换:

atc --model=./resnet_shape.pb --framework=3 --output=./out/resnet_shape --soc_version=Ascend310

报错信息如下:

ATC run failed, Please check the detail log, Try 'atc --help' for more information
E10001: Value [-1] for parameter [Inputs] is invalid. Reason: maybe you should set input_shape to specify its shape
Solution: Try again with a valid argument.

原因分析

原始模型的shape存在不固定的维度值“-1”,模型输入样例如下,模型转换时,并未给不固定的维度值赋值。

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。