使用Apache IoTDB进行IoT相关开发的架构设计与功能实现(9)

举报
小云悠悠zZ 发表于 2023/08/25 20:24:30 2023/08/25
【摘要】 GROUP BY 语句为用户提供了三种类型的指定参数: 参数1:时间轴上的显示窗口 参数2:划分时间轴的时间间隔(应为正) 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

降频聚合查询

本节主要介绍下频聚合查询的相关示例,使用分组依据子句,用于根据用户给定的分区条件对结果集进行分区,并聚合分区的结果集。IoTDB支持根据时间间隔和自定义滑动步长对结果集进行分区,不小于时间间隔,未设置则默认等于时间间隔。默认情况下,结果按时间升序排序。还可以使用Java JDBC用于执行相关查询的标准接口。

GROUP BY 语句为用户提供了三种类型的指定参数:

  • 参数1:时间轴上的显示窗口
  • 参数2:划分时间轴的时间间隔(应为正)
  • 参数3:时间滑动步长(可选,不应小于时间间隔,如果未设置,则默认等于时间间隔)

这三类参数的实际含义如下图5.2所示。其中,参数 3 是可选的。接下来,我们将给出三个典型的降频聚合示例:未指定参数 3、指定参数 3 和指定值过滤条件。

DML (数据操作语言) - 图6

图5.2 三类参数的实际含义

不指定滑动步长的降频聚合查询

SQL 语句为:

  1. select count(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01T00:00:00, 2017-11-07T23:00:00),1d);

这意味着:

由于用户未指定滑动步长,因此 GROUP BY 语句将默认将滑动步长设置为与时间间隔相同的时间间隔,即 。1d

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。将此参数(1d)作为时间间隔,显示窗口的开始时间作为划分原点,将时间轴划分为几个连续区间,分别是[0,1d),[1d,2d),[2d,3d)等。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07 T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 1 天有映射的数据)从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

DML (数据操作语言) - 图7

指定滑动步长的降频聚合查询

SQL 语句为:

  1. select count(status), max_value(temperature) from root.ln.wf01.wt01 group by ([2017-11-01 00:00:00, 2017-11-07 23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

这意味着我们希望每天从 00-00-00 到 02-59-59 获取 2017:11:01 到 2017:11:07 的所有数据。

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为 [2017-11-01T00:00:00, 2017-11-07T23:00:00]范围内的数据),并将这些数据映射到之前分段的时间轴(本例中每 3 小时有映射的数据为每天从2017-11-01T00:00:00到2017-11-07T23:00:00:00)。

由于结果范围内都有每个时间段的数据要显示,因此 SQL 语句的执行结果如下所示:

DML (数据操作语言) - 图8

指定值的降频聚合查询 过滤条件

SQL 语句为:

  1. select count(status), max_value(temperature) from root.ln.wf01.wt01 where time > 2017-11-01T01:00:00 and temperature > 20 group by([2017-11-01T00:00:00, 2017-11-07T23:00:00), 3h, 1d);

这意味着:

由于用户将滑动步长参数指定为 1d,因此 GROUP BY 语句将延长时间间隔,而不是默认。1 day3 hours

上面 GROUP BY 语句的第一个参数是显示窗口参数,它决定了最终的显示范围是 [2017-11-01T00:00:00, 2017-11-07T23:00:00)。

上面 GROUP BY 语句的第二个参数是划分时间轴的时间间隔。以此参数(3h)为时间间隔,以显示窗口的开始时间为划分原点,将时间轴划分为几个连续区间,分别是[2017-11-01T00:00:00、2017-11-01T03:00:00)、[2017-11-02T00:00:00、2017-11-02T03:00:00)、[2017-11-03T00:00:00、2017-11-03T03:00:00)等。

上面 GROUP BY 语句的第三个参数是每个时间间隔移动的滑动步长。

然后系统将使用 WHERE 子句中的时间和值过滤条件和 GROUP BY 语句的第一个参数作为数据过滤条件,得到满足过滤条件的数据(本例中为(2017-11-01T01:00:00,2017-11-07T23:00:00]且满足root.ln.wf01.wt01.温度>20)范围内的数据, 并将这些数据映射到之前分段的时间轴(在这种情况下,从 3-2017-11T01:00:00 到 00-2017-11T07:23:00,每天每 00 小时都有映射的数据)。

DML (数据操作语言) - 图9

左开和右闭合范围

SQL 语句为:

  1. select count(status) from root.ln.wf01.wt01 group by((5, 40], 5ms);

在此 sql 中,时间间隔为左打开和右关闭,因此我们不会包含时间戳 5 的值,而是包含时间戳 40 的值。

我们将得到如下结果:

时间 count(root.ln.wf01.wt01.status)
10 1
15 2
20 3
25 4
30 4
35 3
40 5

使用 Fill 子句的降频聚合查询

在按填充分组中,分组依据子句不支持滑动步骤

现在,分组按填充仅支持last_value聚合函数。

在按填充分组中不支持线性填充。

上一个和以前的区别
  • PREVIOUS 将填充任何空值,只要存在它之前的值不是空值。
  • PREVIOUSUNTILLAST 不会填充时间在该时间序列的最后一个时间之后的结果。

SQL 语句为:

  1. SELECT last_value(temperature) FROM root.ln.wf01.wt01 GROUP BY([8, 39), 5m) FILL (int32[PREVIOUSUNTILLAST])

这意味着:

使用上一页填充方式填充源下频聚合查询结果。

GROUP BY 语句中 SELECT 后面的路径必须是聚合函数,否则系统会给出相应的错误提示,如下所示:

DML (数据操作语言) - 图10

最后一点查询

在 IoT 设备快速更新数据的场景中,用户对 IoT 设备的最新点更感兴趣。

最后一个点查询是以三列格式返回给定时间序列的最新数据点。

SQL 语句定义为:

  1. select last <Path> [COMMA <Path>]* from < PrefixPath > [COMMA < PrefixPath >]* <DISABLE ALIGN>

这意味着:查询并返回时间序列前缀 Path.path 的最后一个数据点。

结果将以三列表格式返回。

  1. | Time | Path | Value |

示例 1:获取 root.ln.wf01.wt01.speed 的最后一点:

  1. > select last speed from root.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ----------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |

示例 2:获取 root.ln.wf01.wt01 的最后一个速度、状态和温度点

  1. > select last speed, status, temperature from root.ln.wf01.wt01
  2. | Time | Path | Value |
  3. | --- | ---------------------------- | ----- |
  4. | 5 | root.ln.wf01.wt01.speed | 100 |
  5. | 7 | root.ln.wf01.wt01.status | true |
  6. | 9 | root.ln.wf01.wt01.temperature| 35.7 |

自动灌装

在IoTDB的实际使用中,在进行时间序列的查询操作时,可能会出现某些时间点值为null的情况,这会阻碍用户的进一步分析。为了更好地反映数据更改的程度,用户希望自动填充缺失值。因此,IoTDB系统引入了自动填充功能。

自动填充功能是指在对单列或多列进行时间序列查询时,根据用户指定的方法和有效时间范围填充空值。如果查询点的值不为 null,则填充函数将不起作用。

注意:在当前版本中,IoTDB为用户提供了两种方法:先前和线性。上一种方法用以前的值填充空白。线性方法通过线性拟合填充空白。并且 fill 函数只能在执行时间点查询时使用。

填充功能

  • 上一个函数

当查询时间戳的值为 null 时,使用上一个时间戳的值来填充空白。形式化的先前方法如下(有关详细语法,请参见第 7.1.3.6 节):

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[previous, <before_range>], …)

所有参数的详细说明见表3-4。

**表3-4 以前的填充参数列表**

参数名称(不区分大小写) 解释
路径,前缀路径 查询路径;必填项
T 查询时间戳(只能指定一个);必填项
data_type 填充方法使用的数据类型。可选值为 int32、int64、浮点型、双精度型、布尔值、文本;可选字段
before_range 表示上一种方法的有效时间范围。当存在 [T-before_range, T] 范围内的值时,前一种方法有效。如果未指定before_range,before_range采用默认值default_fill_interval;-1 表示无穷大;可选字段

在这里,我们给出了使用前面的方法填充空值的示例。SQL 语句如下:

  1. select temperature from root.sgcc.wf03.wt01 where time = 2017-11-01T16:37:50.000 fill(float[previous, 1m])

这意味着:

由于时间序列 root.sgcc.wf03.wt01.temperature在 2017-11-01T16:37:50.000 为空,因此系统使用之前的时间戳 2017-11-01T16:37:00.000(时间戳在 [2017-11-01T16:36:50.000, 2017-11-01T16:37:50.000] 时间范围内)进行填充和显示。

示例数据DML (数据操作语言) - 图11,此语句的执行结果如下所示:

DML (数据操作语言) - 图12

值得注意的是,如果在指定的有效时间范围内没有值,系统将不会填充null值,如下所示:

DML (数据操作语言) - 图13

  • 线性法

当查询时间戳的值为 null 时,使用上一个和下一个时间戳的值来填充空白。形式化的线性方法如下:

  1. select <path> from <prefixPath> where time = <T> fill(<data_type>[linear, <before_range>, <after_range>]…)
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。