【机器学习 | 决策树】利用数据的潜力:用决策树解锁洞察力

举报
计算机魔术师 发表于 2023/08/24 10:07:19 2023/08/24
【摘要】 🤵‍♂️ 个人主页: @AI_magician📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)该文章收录专栏[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨] 决策树 1.1...

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

决策树

1.1 分类

决策树是一种基于树形结构的分类模型,它通过对数据属性的逐步划分,将数据集分成多个小的决策单元。每个小的决策单元都对应着一个叶节点,在该节点上进行分类决策。决策树的核心是如何选择最优的分割属性。常见的决策树算法有ID3、C4.5和CART。

具体来说,构建决策树的过程可以分为如下几个步骤:

  1. 选择最优特征。在构建决策树时,需要从当前样本集合中选择一个最优的特征作为当前节点的划分属性。通常使用信息增益、信息增益比或基尼指数等指标来评估各个特征的划分能力,并选取最优特征。

    基尼指数和信息增益都是用于决策树中特征选择的指标,它们各有优劣。

    基尼指数是一种衡量数据集纯度或不确定性的指标,常用于决策树算法中的特征选择。它基于基尼系数的概念,用于度量从数据集中随机选择两个样本,其类别标签不一致的概率,用于衡量选择某个特征进行划分后,数据集的纯度提升程度

    每一个数据集基尼指数的计算公式如下:
    G i n i ( D ) = 1 Σ ( p i ) 2 Gini(D) = 1 - Σ (p_i)^2

    其中, G i n i ( D ) Gini(D) 表示数据集 D D 的基尼指数, p i p_i 表示数据集$$D$$中第 i i 个类别的样本所占比例。基尼指数的取值范围为0到1,数值越小表示数据集的纯度越高,即样本的类别越一致。当数据集D中只包含一种类别的样本时,基尼指数为0,表示数据集完全纯净。当数据集D中的样本类别均匀分布时,基尼指数最大(即值越小)为1,表示数据集的不确定性最高。

    $gini = (i * gini_{left} + (m - i) * gini_{right}) / m $

    其中 m m 是样本总数, i i 是左节点样本数量。通过计算在分支节点中选择最小的加权平均的基尼指数,以达到最大程度地减少数据集的不确定性(提高数据集纯度)。

    信息增益同样衡量了在选择某个特征作为节点后,数据集的纯度提高了多少。信息增益的计算基于信息熵的概念。

    信息熵是用来衡量数据集的混乱程度或不确定性的度量。对于一个二分类问题(如购买与否),信息熵的计算公式如下 (多分类也一样,每个不题类别求和):

    E n t r o p y ( S ) = p ( Y e s ) l o g 2 ( p ( Y e s ) ) p ( N o ) l o g 2 ( p ( N o ) ) Entropy(S) = -p(Yes) * log2(p(Yes)) - p(No) * log2(p(No))

    其中,S是数据集,p(Yes)p(No)分别是购买为"是"和"否"的样本在数据集中的比例。(信息熵公式性质代表了分布越平均,不确定性越大,信息熵越大(如果单单是使用了log函数还无法达到需要加上概率相乘,可以拿一些数据案例测试一下))

    信息增益的计算公式如下(不同类别信息熵相加):

    G a i n ( S , A ) = E n t r o p y ( S ) ( S v / S ) E n t r o p y ( S v ) Gain(S, A) = Entropy(S) - ∑(|Sv| / |S|) * Entropy(Sv)

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PfFqJhtf-1692775601947)(core algorithm.assets/1280px-Logarithm_plots.png)]

    其中,S是数据集,A是要计算信息增益的特征,Sv是特征A的某个取值对应的子集,|Sv|是子集Sv的样本数量,|S|是数据集S的样本数量。 (通过这个子集数量大小控制影响权重求得每个子集的信息熵求和,然后确定信息增益最大的(即信息熵最小),)

    信息增益越大(即信息熵越小->数据集纯度越高,确定性大),意味着使用特征A作为节点可以更好地分割数据集,提高纯度。

    在我们的例子中,我们计算了每个特征的信息增益,并选择了具有最大信息增益的特征作为根节点。然后,我们根据根节点的取值将数据集分割成子集,并对每个子集计算信息增益,以选择下一个节点。这个过程一直持续到满足停止条件为止,例如子集中的样本都属于同一类别达到了预定的树的深度

    总结以下是基尼指数和信息增益的优缺点(其实二者都是衡量节点分类之后子数据集的纯度提升

    基尼指数:

    优点:

    1. 它在计算上比信息增益更简单和高效。适合处理处理大规模数据集,基尼指数的计算速度通常比信息增益快。(平方运算要简单于对数运算

    缺点:

    1. 基尼指数只关注当前节点上类别标签分布情况,没有考虑到后续划分会如何影响整体数据集纯度。
    2. 对于属性取值较少且不均匀分布的特征,在使用基尼系数进行划分时可能会产生偏向性。
    3. 基尼指数更倾向于选择具有较大数量样本的特征作为划分点,而在多类别问题中可能会忽略少数类别之间的差异

    信息增益:

    优点:

    1. 信息增益通过熵(Entropy)衡量了一个特征对于分类任务所提供的全部信息,并能够考虑到后续划分对整体数据集纯度改善程度。因此,在一些情况下可以得到更好地结果。
    2. 适用于处理属性取值较少且分布均匀的特征。(毕竟计算量也挺大的)
    3. 它基于信息论的概念,可以更好地处理多分类问题。信息增益在处理不平衡数据集时表现较好(,能够更好地处理类别不均衡的情况。

    使用基尼指数还是信息熵取决于具体情况和需求:

    • 如果你想要快速得出结果并处理大规模数据,请使用基尼指数。
    • 如果你关注模型的纯度和分类能力整体数据集纯度改善程度),并且数据集较小,则信息熵可能是更好的选择。且在处理多类别问题时,信息增益是更常用且通常更适合的选择。
  2. 划分子集。根据选取的最优特征,将当前样本集合划分成若干个子集。每个子集对应于一个子节点,且该节点所代表的样本集合与其父节点的样本集合不重复。

  3. 递归构建决策树。对于每个子节点,重复前两个步骤,直到所有的样本都被分配到叶子节点上,并且每个叶子节点对应着一个类别。

  4. 剪枝操作。由于决策树容易出现过拟合,因此需要进行剪枝操作。常用的剪枝方法包括预剪枝和后剪枝。

在进行分类时,对输入测试样本,按照各个属性的划分方式逐步匹配,最终到达某个叶子节点,并将该测试样本归为叶子节点所代表的类别。决策树的输出结果就是针对测试样本的分类结果,即该测试样本所属的类别。

决策树的优点在于易于理解和解释,能够处理不同类型的数据,且不需要对数据进行预处理。但是,决策树容易出现过拟合问题,因此在构建决策树时需要进行剪枝操作。常用的剪枝方法包括预剪枝和后剪枝。

在构建决策树时,在处理特征取值较多的分类问题时表现良好。

考虑这样一个例子:假设我们要构建一个决策树模型来预测天气是否适合进行户外运动。我们可以选择两个特征:温度湿度温度可能只有三个离散取值(低、中、高),而湿度则具有连续范围。如果我们将温度作为划分依据,则每次划分仅能得到三类样本;但如果选择湿度作为划分依据,则可以基于连续范围进行无数次精确地切割,从而获得更加详尽和准确的分类结果。因为它具有更多的取值,这个特征就有潜力提供更多信息来区分不同类别

1.1.1 案例

当然,我可以为您提供一个决策树的详细例子。假设我们要构建一个决策树来预测一个人是否会购买某个产品。我们将使用以下特征来进行预测:

  1. 年龄:年龄范围在18岁到65岁之间。
  2. 性别:男性或女性。
  3. 收入:收入范围在0到100,000之间。

我们有一个包含以下数据的训练集:

编号 年龄 性别 收入 购买
1 25 男性 30,000
2 35 女性 40,000
3 45 女性 80,000
4 20 男性 10,000
5 55 男性 60,000
6 60 女性 90,000
7 30 男性 50,000
8 40 女性 75,000

现在,我们将使用这些数据来构建一个决策树模型。

首先,我们选择一个特征来作为根节点。我们可以使用信息增益或基尼不纯度等指标来选择最佳特征。在这个例子中,我们选择使用信息增益。

计算每个特征的信息增益:

  • 年龄的信息增益:0.029
  • 性别的信息增益:0.152
  • 收入的信息增益:0.048

根据信息增益,我们选择性别作为根节点。

接下来,我们根据性别的取值(男性或女性)将数据集分割成两个子集。

对于男性子集:

编号 年龄 收入 购买
1 25 30,000
4 20 10,000
5 55 60,000
7 30 50,000

对于女性子集:

编号 年龄 收入 购买
2 35 40,000
3 45 80,000
6 60 90,000
8 40 75,000

对于男性子集,我们可以看到购买的结果是"是"和"否"都有,所以我们需要进一步划分。我们选择年龄作为下一个节点。

对于年龄的取值(小于等于30岁和大于30岁):

对于小于等于30岁的子集:

编号 收入 购买
1 30,000
4 10,000
7 50,000

对于大于30岁的子集:

编号 收入 购买
5 60,000

对于小于等于30岁的子集,购买的结果都是"否",所以我们不需要再进行划分。

对于大于30岁的子集,购买的结果都是"是",所以我们不需要再进行划分。

对于女性子集,购买的结果都是"是",所以我们不需要再进行划分。

最终的决策树如下所示:

性别 = 男性:
    年龄 <= 30: 否
    年龄 > 30: 是
性别 = 女性:

这就是一个简单的决策树的例子。根据输入的特征,决策树可以根据特征的取值进行预测。请注意,这只是一个简单的示例,实际上,决策树可以有更多的特征和更复杂的结构。

首先,我们使用scikit-learn库来实现决策树:

from sklearn import tree
import numpy as np

# 数据集
X = np.array([[25, 1, 30000],
              [35, 0, 40000],
              [45, 0, 80000],
              [20, 1, 10000],
              [55, 1, 60000],
              [60, 0, 90000],
              [30, 1, 50000],
              [40, 0, 75000]])

Y = np.array([0, 0, 1, 0, 1, 1, 0, 1])

# 创建决策树模型
clf = tree.DecisionTreeClassifier()

# 训练模型
clf = clf.fit(X, Y)

# 预测
print(clf.predict([[40, 0, 75000],[10, 0, 75000]]))  # 输出:[1, 0]

然后,我们不使用任何机器学习库来实现决策树:

import numpy as np

class Node:
    def __init__(self, predicted_class):
        self.predicted_class = predicted_class  # 预测的类别
        self.feature_index = 0  # 特征索引
        self.threshold = 0  # 阈值
        self.left = None  # 左子树
        self.right = None  # 右子树

class DecisionTree:
    def __init__(self, max_depth=None):
        self.max_depth = max_depth  # 决策树的最大深度

    def fit(self, X, y):
        self.n_classes_ = len(set(y))  # 类别的数量
        self.n_features_ = X.shape[1]  # 特征的数量
        self.tree_ = self._grow_tree(X, y)  # 构建决策树

    def predict(self, X):
        return [self._predict(inputs) for inputs in X]  # 对输入数据进行预测
    
    def _best_gini_split(self, X, y):
        m = y.size  # 样本的数量
        if m <= 1:  # 如果样本数量小于等于1,无法进行分割
            return None, None
        num_parent = [np.sum(y == c) for c in range(self.n_classes_)]  # 每个类别在父节点中的样本数量
        best_gini = 1.0 - sum((n / m) ** 2 for n in num_parent)  # 父节点的基尼指数
        best_idx, best_thr = None, None  # 最佳分割特征索引和阈值
        for idx in range(self.n_features_):  # 遍历每个特征
            thresholds, classes = zip(*sorted(zip(X[:, idx], y)))  # 根据特征值对样本进行排序
            num_left = [0] * self.n_classes_  # 左子节点中每个类别的样本数量
            num_right = num_parent.copy()  # 右子节点中每个类别的样本数量,初始值为父节点的样本数量
            for i in range(1, m):  # 遍历每个样本
                c = classes[i - 1]  # 样本的类别
                num_left[c] += 1  # 更新左子节点中对应类别的样本数量
                num_right[c] -= 1  # 更新右子节点中对应类别的样本数量
                gini_left = 1.0 - sum(
                    (num_left[x] / i) ** 2 for x in range(self.n_classes_)
                )  # 左子节点的基尼指数
                gini_right = 1.0 - sum(
                    (num_right[x] / (m - i)) ** 2 for x in range(self.n_classes_)
                )  # 右子节点的基尼指数
                gini = (i * gini_left + (m - i) * gini_right) / m  # 加权平均的基尼指数
                if thresholds[i] == thresholds[i - 1]:  # 如果特征值相同,则跳过(特征阈值)
                    continue
                if gini < best_gini:  # 如果基尼指数更小,则更新最佳分割特征索引和阈值 (循环每个特征,和每个阈值,以求解最优分类
                    best_gini = gini
                    best_idx = idx
                    best_thr = (thresholds[i] + thresholds[i - 1]) / 2
        return best_idx, best_thr  # 返回最佳分割特征索引和阈值

    def _best_gain_split(self, X, y):
        m = y.size  # 样本的数量
        if m <= 1:  # 如果样本数量小于等于1,无法进行分割
            return None, None
        num_parent = [np.sum(y == c) for c in range(self.n_classes_)]  # 计算每个类别的样本数量
        best_gain = -1  # 初始化最佳信息增益
        best_idx, best_thr = None, None  # 初始化最佳特征索引和阈值
        for idx in range(self.n_features_):  # 遍历每个特征
            thresholds, classes = zip(*sorted(zip(X[:, idx], y)))  # 对每个特征值和类别标签进行排序
            num_left = [0] * self.n_classes_  # 初始化左子树的类别数量 (左边都是0,为0时自动计算为0) 
            num_right = num_parent.copy()  # 右子树的类别数量初始化为父节点的类别数量 (右边是全部)
            for i in range(1, m):  # 遍历每个样本
                c = classes[i - 1]  # 获取当前样本的类别
                num_left[c] += 1  # 左子树的类别数量增加
                num_right[c] -= 1  # 右子树的类别数量减少
                entropy_parent = -sum((num / m) * np.log2(num / m) for num in num_parent if num != 0)  # 计算父节点的熵
                entropy_left = -sum((num / i) * np.log2(num / i) for num in num_left if num != 0)  # 计算左子树的熵
                entropy_right = -sum((num / (m - i)) * np.log2(num / (m - i)) for num in num_right if num != 0)  # 计算右子树的熵
                gain = entropy_parent - (i * entropy_left + (m - i) * entropy_right) / m  # 计算信息增益(分类后左右的信息熵最小)
                if thresholds[i] == thresholds[i - 1]:  # 如果当前样本的特征值和前一个样本的特征值相同,跳过(不一样才能分界)
                    continue
                if gain > best_gain:  # 如果当前的信息增益大于最佳信息增益
                    best_gain = gain  # 更新最佳信息增益
                    best_idx = idx  # 更新最佳特征索引
                    best_thr = (thresholds[i] + thresholds[i - 1]) / 2  # 更新最佳阈值 (循环每个样本的值,根据两份数据均值确定阈值,一直循环)
        return best_idx, best_thr  # 返回最佳特征索引和阈值

    def _grow_tree(self, X, y, depth=0):
        num_samples_per_class = [np.sum(y == i) for i in range(self.n_classes_)]  # 计算每个类别的样本数量
        predicted_class = np.argmax(num_samples_per_class)  # 预测的类别为样本数量最多的类别 (即确定分到该分支样本最多的记为该类)
        node = Node(predicted_class=predicted_class)  # 创建节点
        if depth < self.max_depth:  # 如果当前深度小于最大深度
            idx, thr = self._best_gain_split(X, y)  # 计算最佳分割
            if idx is not None:  # 如果存在最佳分割
                indices_left = X[:, idx] < thr  # 左子树的样本索引 (第 idx特征中小于thr阈值的索引)
                X_left, y_left = X[indices_left], y[indices_left]  # 左子树的样本
                X_right, y_right = X[~indices_left], y[~indices_left]  # 右子树的样本
                node.feature_index = idx  # 设置节点的特征索引
                node.threshold = thr  # 设置节点的阈值
                node.left = self._grow_tree(X_left, y_left, depth + 1)  # 构建左子树
                node.right = self._grow_tree(X_right, y_right, depth + 1)  # 构建右子树
        return node  # 返回节点

    def _predict(self, inputs):
        node = self.tree_  # 获取决策树的根节点
        while node.left:  # 如果存在左子树
            if inputs[node.feature_index] < node.threshold:  # 如果输入样本的特征值小于阈值
                node = node.left  # 到左子树
            else:
                node = node.right  # 到右子树
        return node.predicted_class  # 返回预测的类别

# 数据集
X = [[25, 1, 30000],
     [35, 0, 40000],
     [45, 0, 80000],
     [20, 1, 10000],
     [55, 1, 60000],
     [60, 0, 90000],
     [30, 1, 50000],
     [40, 0, 75000]]

Y = [0, 0, 1, 0, 1, 1, 0, 1]

# 创建决策树模型
clf = DecisionTree(max_depth=2)

# 训练模型
clf.fit(np.array(X), np.array(Y))

# 预测
print(clf.predict([[40, 0, 75000],[10, 0, 75000]]))  # 输出:[1, 0]

请注意,这个不使用任何机器学习库的决策树实现是一个基本的版本,它可能无法处理所有的情况,例如缺失值、分类特征等。在实际应用中,我们通常使用成熟的机器学习库,如scikit-learn,因为它们提供了更多的功能和优化。

1.2 回归

当决策树用于回归任务时,它被称为决策树回归模型。与分类树不同,决策树回归模型的叶子节点不再表示类别标签,而是表示一段连续区间或者一个数值。它同样基于树形结构,通过对数据特征的逐步划分,将数据集分成多个小的决策单元,并在每个叶子节点上输出一个预测值。

以下是决策树回归模型的详细原理:

  1. 划分过程

与分类树相似,决策树回归模型也采用递归二分的方式进行划分。具体来说,从根节点开始,选择一个最优特征和该特征的最优划分点。然后将数据集按照该特征的取值分为两部分,分别构建左右子树。重复以上步骤,直到满足停止条件,比如达到最大深度、划分后样本数少于阈值等。

  1. 叶子节点的输出值

当到达某个叶子节点时,该叶子节点的输出值就是训练集中该叶子节点对应的所有样本的平均值(或中位数等)

  1. 预测过程

对于一个测试样本,从根节点开始,按照各个特征的划分方式逐步匹配,最终到达某个叶子节点,并将该测试样本的预测值设为该叶子节点的输出值。

  1. 剪枝操作

与分类树一样,决策树回归模型也容易出现过拟合问题,因此需要进行剪枝操作。常用的剪枝方法包括预剪枝和后剪枝。

  1. 特点

决策树回归模型具有以下特点:

(1)易于解释:决策树回归模型能够直观地反映各个特征对目标变量的影响程度。

(2)非参数性:决策树回归模型不对数据分布做任何假设,适用于各种类型的数据。

(3)可处理多元特征:决策树回归模型可以同时处理多个输入特征。

(4)不需要数据正态化:决策树回归模型不需要对输入数据进行正态化等预处理。

在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞
					🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩
					 	 🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。