打卡力扣题目五

举报
踏破千重浪 发表于 2023/08/14 20:16:03 2023/08/14
【摘要】 目录 一、问题 二、解题方法一三、解题方法二四、两种方法的区别 关于 ARTS 的释义 —— 每周完成一个 ARTS:● Algorithm: 每周至少做一个 LeetCode 的算法题● Review: 阅读并点评至少一篇英文技术文章● Tips: 学习至少一个技术技巧● Share: 分享一篇有观点和思考的技术文章希望通过此次活动能聚集一波热爱技术的人,延续好奇、探索、实践、分享的精神。...

目录

 一、问题

 二、解题方法一

三、解题方法二

四、两种方法的区别

 关于 ARTS 的释义 —— 每周完成一个 ARTS:
● Algorithm: 每周至少做一个 LeetCode 的算法题
● Review: 阅读并点评至少一篇英文技术文章
● Tips: 学习至少一个技术技巧
● Share: 分享一篇有观点和思考的技术文章

希望通过此次活动能聚集一波热爱技术的人,延续好奇、探索、实践、分享的精神。
 

 一、问题
今天是杨辉三角的题目

给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。

在「杨辉三角」中,每个数是它左上方和右上方的数的和。

示例 1:

输入: numRows = 5
输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

示例 2:

输入: numRows = 1
输出: [[1]]

 二、解题方法一
def generate(numRows):
    res = []
    for i in range(numRows):
        row = [1]
        if res:
            last_row = res[-1]
            row.extend([sum(pair) for pair in zip(last_row, last_row[1:])])
            row.append(1)
        res.append(row)
    return res
这段代码实现了一个名为 `generate` 的函数,用于生成杨辉三角的前 numRows 行。

首先,我们定义了一个空列表 `res`,用于存储每一行的结果。然后,使用一个 for 循环遍历每一行,对于第 i 行,我们先将第一个元素设为 1,表示该行的第一个数是 1。

接着,如果 `res` 不为空,则说明已经生成了前几行,我们可以从上一行中获取到当前行需要用到的数据。具体来说,我们使用 zip 函数将当前行和上一行进行配对,得到一个由元组组成的列表。每个元组包含两个相邻的元素,例如 [(1, 2), (2, 3), (3, 5)] 表示第三行的前两个数是 1、2,第三个数是 1+2=3、2+3=5。然后,我们使用列表推导式将这些元组中的元素两两相加,得到一个新的列表,其中包含了当前行的所有数。最后,我们将最后一个元素设为 1,表示当前行的最后一个数也是 1。

将当前行的结果添加到 `res` 中后,继续循环生成下一行。当所有行都生成完毕后,返回 `res` 作为结果。

需要注意的是,在 Python 中,列表是可变对象,因此在函数内部修改 `res` 不会影响到外部的变量。但是在函数内部直接修改 `res[-1]` 是不可取的,因为这样会改变列表的长度,导致后面的元素被覆盖。正确的做法是使用 `append` 方法向列表末尾添加新元素。

三、解题方法二
另一种解题方法是使用动态规划的思想,从底部开始逐层生成杨辉三角。具体来说,我们可以定义一个二维数组 `dp`,其中 dp[i][j] 表示第 i 行、第 j 列的元素值。然后,我们使用两个嵌套的循环遍历每一行和每一列,根据题目中的规则计算出每个元素的值,并将其保存到 `dp` 中。最后,将 `dp` 转置得到最终的结果。

这种方法的时间复杂度为 O(n^2),空间复杂度也为 O(n^2)。相比于直接生成所有元素的方法,这种方法更加高效。

class Solution:
    def generate(self, numRows):
        if numRows == 0:
            return []
        
        dp = [[1] * numRows for _ in range(numRows)]
        for i in range(2, numRows):
            for j in range(1, i):
                dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
        
        return list(map(list, zip(*dp)))
这段代码定义了一个名为 Solution 的类,其中包含了一个名为 generate 的方法。这个方法接受一个非负整数 numRows 作为参数,返回杨辉三角的前 numRows 行。

在方法内部,我们首先判断 numRows 是否为 0,如果是则直接返回空列表。然后,我们定义一个二维数组 dp,用于存储每个元素的值。接下来,我们使用两个嵌套的循环遍历每一行和每一列,根据题目中的规则计算出每个元素的值,并将其保存到 dp 中。最后,我们使用 zip 函数将 dp 转置得到最终的结果,并将其转换为列表返回。

四、两种方法的区别
两种方法的主要区别在于实现思路和时间/空间复杂度。

第一种方法是直接生成所有元素的方法,它的核心思想是使用一个循环遍历每一行和每一列,根据题目中的规则计算出每个元素的值,并将其添加到结果列表中。这种方法的时间复杂度为 O(n^2),因为需要遍历所有的元素。同时,由于需要存储所有的元素,因此空间复杂度也为 O(n^2)。

第二种方法是使用动态规划的思想,从底部开始逐层生成杨辉三角。它的核心思想是使用一个二维数组 `dp` 来存储每个元素的值,然后使用两个嵌套的循环遍历每一行和每一列,根据题目中的规则计算出每个元素的值,并将其保存到 `dp` 中。最后,我们将 `dp` 转置得到最终的结果。这种方法的时间复杂度为 O(n^2),空间复杂度也为 O(n^2)。相比于第一种方法,这种方法更加高效,因为它只需要存储当前层的所有元素,而不需要存储整个三角形的所有元素。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。