从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单

举报
汀丶 发表于 2023/07/10 16:48:33 2023/07/10
【摘要】 从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单KBQA

从零开始的知识图谱生活,构建一个百科知识图谱,完成基于Deepdive的知识抽取、基于ES的简单语义搜索、基于 REfO 的简单KBQA

个人入门知识图谱过程中的学习笔记,算是半教程类的,指引初学者对知识图谱的各个任务有一个初步的认识。目前暂无新增计划。

1.简介

目标是包含百度百科、互动百科、中文wiki百科的知识,千万级实体数量和亿级别的关系数目。目前已完成百度百科和互动百科部分,其中百度百科词条4,190,390条,互动百科词条4,382,575条。转换为RDF格式得到三元组 128,596,018个。存入 neo4j中得到节点 16,498,370个,关系 56,371,456个,属性 61,967,517个。

项目码源见文末

码源:点击跳转

2.获取数据

2.1 半结构化数据

半结构化数据从百度百科和互动百科获取,采用scrapy框架,目前电影领域和通用领域两类。

2.2 非结构化数据

非结构化数据主要来源为微信公众号、虎嗅网新闻和百科内的非结构化文本。

微信公众号爬虫获取公众号发布文章的标题、发布时间、公众号名字、文章内容、文章引用来源,对应 ie/craw/weixin_spider。虎嗅网爬虫 获取虎嗅网新闻的标题、简述、作者、发布时间、新闻内容,对应 ie/craw/news_spider。

3. 非结构化文本的知识抽取

3.1 基于Deepdive的知识抽取

Deepdive是由斯坦福大学InfoLab实验室开发的一个开源知识抽取系统。它通过弱监督学习,从非结构化的文本中抽取结构化的关系数
据 。本次实战基于OpenKG上的[支持中文的deepdive:斯坦福大学的开源知识抽取工具(三元组抽取)](http://www.openkg.cn/ dataset/cn-deepdive),我们基于此,抽取电影领域的演员-电影关系。

详细介绍请见从零开始构建知识图谱(五)Deepdive抽取演员-电影间关系

3.2 神经网络关系抽取

利用自己的百科类图谱,构建远程监督数据集,并在OpenNRE上运行。最终生成的数据集包含关系事实18226,无关系(NA)实体对336 693,总计实体对354 919,用到了462个关系(包含NA)。

详细介绍请见从零开始构建知识图谱(九)百科知识图谱构建(三)神经网络关系抽取的数据集构建与实践

4.结构化数据到 RDF

结构化数据到RDF由两种主要方式,一个是通过direct mapping,另一个通过R2RML语言这种,基于R2RML语言的方式更为灵活,定制性强。对于R2RML有一些好用的工具,此处我们使用d2rq工具,它基于R2RML-KIT。

详细介绍请见从零开始构建知识图谱(二)数据库到 RDF及 Jena的访问

5.知识存储

5.1 将数据存入 Neo4j

图数据库是基于图论实现的一种新型NoSQL数据库。它的数据数据存储结构和数据的查询方式都是以图论为基础的。图论中图的节本元素为节点和边,对应于图数据库中的节点和关系。我们将上面获得的数据存到 Neo4j中。

百科类图谱请见:从零开始构建知识图谱(八)百科知识图谱构建(二)将数据存进neo4j

电影领域的请见从零开始构建知识图谱(六)将数据存进Neo4j

6.KBQA

6.1 基于 REfO 的简单KBQA

基于浙江大学在openKG上提供的 基于 REfO 的 KBQA 实现及示例,在自己的知识图谱上实现简单的知识问答系统。

详细介绍请见从零开始构建知识图谱(三)基于REfO的简单知识问答

  • 示例

语义搜索

基于elasticsearch 的简单语义搜索

本项目是对浙大的 基于elasticsearch的KBQA实现及示例 的简化版本,并在自己的数据库上做了实现。

详细介绍请见从零开始构建知识图谱(四)基于ES的简单语义搜索

  • 示例

项目码源见文末

码源:点击跳转

更多优质内容请关注公号&知乎:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。