【愚公系列】2023年06月 Java教学课程 126-Redis的数据删除与淘汰策略

举报
愚公搬代码 发表于 2023/06/30 22:40:26 2023/06/30
【摘要】 一、数据删除与淘汰策略1.过期数据1.1 Redis中的数据特征Redis是一种内存级数据库,所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态TTL返回的值有三种情况:正数,-1,-2• 正数:代表该数据在内存中还能存活的时间• -1:永久有效的数据• -2 :已经过期的数据 或被删除的数据 或 未定义的数据删除策略就是针对已过期数据的处理策略,已过期的数据是真的就立即删除了...

一、数据删除与淘汰策略

1.过期数据

1.1 Redis中的数据特征

Redis是一种内存级数据库,所有数据均存放在内存中,内存中的数据可以通过TTL指令获取其状态

TTL返回的值有三种情况:正数,-1,-2

正数:代表该数据在内存中还能存活的时间

-1:永久有效的数据

-2 :已经过期的数据 或被删除的数据 或 未定义的数据

删除策略就是针对已过期数据的处理策略,已过期的数据是真的就立即删除了吗?其实也不是,我们会有多种删除策略,是分情况的,在不同的场景下使用不同的删除方式会有不同效果,这也正是我们要将的数据的删除策略的问题

1.2 时效性数据的存储结构

在Redis中,如何给数据设置它的失效周期呢?数据的时效在redis中如何存储呢?看下图:


过期数据是一块独立的存储空间,Hash结构,field是内存地址,value是过期时间,保存了所有key的过期描述,在最终进行过期处理的时候,对该空间的数据进行检测, 当时间到期之后通过field找到内存该地址处的数据,然后进行相关操作。

2.数据删除策略

2.1 数据删除策略的目标

在内存占用与CPU占用之间寻找一种平衡,顾此失彼都会造成整体redis性能的下降,甚至引发服务器宕机或 内存泄露

针对过期数据要进行删除的时候都有哪些删除策略呢?

• 1.定时删除

• 2.惰性删除

• 3.定期删除

2.2 定时删除

创建一个定时器,当key设置有过期时间,且过期时间到达时,由定时器任务立即执行对键的删除操作

优点:节约内存,到时就删除,快速释放掉不必要的内存占用

缺点:CPU压力很大,无论CPU此时负载量多高,均占用CPU,会影响redis服务器响应时间和指令吞吐量

总结:用处理器性能换取存储空间(拿时间换空间)


2.3 惰性删除

数据到达过期时间,不做处理。等下次访问该数据时,我们需要判断

1. 如果未过期,返回数据

2. 发现已过期,删除,返回不存在

优点:节约CPU性能,发现必须删除的时候才删除

缺点:内存压力很大,出现长期占用内存的数据

总结:用存储空间换取处理器性能(拿时间换空间)


2.4 定期删除

定时删除和惰性删除这两种方案都是走的极端,那有没有折中方案?

我们来讲redis的定期删除方案:

• Redis启动服务器初始化时,读取配置server.hz的值,默认为10

• 每秒钟执行server.hz次serverCron()-------->databasesCron()--------->activeExpireCycle()

activeExpireCycle()对每个expires[*]逐一进行检测,每次执行耗时:250ms/server.hz

• 对某个expires[*]检测时,随机挑选W个key检测

如果key超时,删除key

如果一轮中删除的key的数量>W*25%,循环该过程

如果一轮中删除的key的数量≤W*25%,检查下一个expires[*],0-15循环

W取值=ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP属性值

• 参数current_db用于记录activeExpireCycle() 进入哪个expires[*] 执行

• 如果activeExpireCycle()执行时间到期,下次从current_db继续向下执行


特点1:CPU性能占用设置有峰值,检测频度可自定义设置

特点2:内存压力不是很大,长期占用内存的冷数据会被持续清理

总结:周期性抽查存储空间(随机抽查,重点抽查)

2.5 删除策略对比

1:定时删除:

节约内存,无占用,
不分时段占用CPU资源,频度高,
拿时间换空间

2:惰性删除:

内存占用严重
延时执行,CPU利用率高
拿空间换时间

3:定期删除:

内存定期随机清理
每秒花费固定的CPU资源维护内存
随机抽查,重点抽查

3.数据淘汰策略(逐出算法)

3.1 淘汰策略概述

什么叫数据淘汰策略?什么样的应用场景需要用到数据淘汰策略?

当新数据进入redis时,如果内存不足怎么办?在执行每一个命令前,会调用freeMemoryIfNeeded()检测内存是否充足。如果内存不满足新加入数据的最低存储要求,redis要临时删除一些数据为当前指令清理存储空间。清理数据的策略称为逐出算法。

注意:逐出数据的过程不是100%能够清理出足够的可使用的内存空间,如果不成功则反复执行。当对所有数据尝试完毕,如不能达到内存清理的要求,将出现错误信息如下

(error) OOM command not allowed when used memory >'maxmemory'

3.2 策略配置

影响数据淘汰的相关配置如下:

1:最大可使用内存,即占用物理内存的比例,默认值为0,表示不限制。生产环境中根据需求设定,通常设置在50%以上

maxmemory ?mb

2:每次选取待删除数据的个数,采用随机获取数据的方式作为待检测删除数据

maxmemory-samples count

3:对数据进行删除的选择策略

maxmemory-policy policy

那数据删除的策略policy到底有几种呢?一共是3类8种

第一类:检测易失数据(可能会过期的数据集server.db[i].expires )

volatile-lru:挑选最近最少使用的数据淘汰
volatile-lfu:挑选最近使用次数最少的数据淘汰
volatile-ttl:挑选将要过期的数据淘汰
volatile-random:任意选择数据淘汰

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Wd6oD2DI-1680312844183)(./img/lru.png)]

第二类:检测全库数据(所有数据集server.db[i].dict )

allkeys-lru:挑选最近最少使用的数据淘汰
allkeLyRs-lfu::挑选最近使用次数最少的数据淘汰
allkeys-random:任意选择数据淘汰,相当于随机

第三类:放弃数据驱逐

no-enviction(驱逐):禁止驱逐数据(redis4.0中默认策略),会引发OOM(Out Of Memory)

注意:这些策略是配置到哪个属性上?怎么配置?如下所示

maxmemory-policy volatile-lru

数据淘汰策略配置依据

使用INFO命令输出监控信息,查询缓存 hit 和 miss 的次数,根据业务需求调优Redis配置

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。