全球光伏发电目录(2016-2018)数据集

举报
此星光明 发表于 2023/05/25 16:49:06 2023/05/25
【摘要】 ​全球光伏发电目录(2016-2018)自2009年以来,光伏(PV)太阳能发电能力每年增长41%。作者指出,缓解气候变化和帮助普及能源的能源系统预测显示,到2040年,光伏太阳能发电能力将增加近10倍。作者进一步找到并核实了68,661个设施,在以前可获得的资产层面的数据上,增加了432%(设施数量)。在手工标记的测试集的帮助下,我们估计2018年底全球发电装机容量为423千兆瓦(-75/...

全球光伏发电目录(2016-2018)
自2009年以来,光伏(PV)太阳能发电能力每年增长41%。作者指出,缓解气候变化和帮助普及能源的能源系统预测显示,到2040年,光伏太阳能发电能力将增加近10倍。作者进一步找到并核实了68,661个设施,在以前可获得的资产层面的数据上,增加了432%(设施数量)。在手工标记的测试集的帮助下,我们估计2018年底全球发电装机容量为423千兆瓦(-75/+77千兆瓦)。前言 – 床长人工智能教程

对于超过10,000平方米(约600千瓦)的装置,相对于我们的测试集,实现的精度为98.6%,召回率略有折损,下降到90%(补充图6)。对于超过10,000平方米的装置,最终数据集的IoU为90%--足以满足基于用户报告的广泛用途。A global inventory of photovoltaic solar energy generating units | Nature

Citation:

Kruitwagen, L., Story, K.T., Friedrich, J. et al. A global inventory of photovoltaic solar energy generating units.
Nature 598, 604–610 (2021). https://doi.org/10.1038/s41586-021-03957-7

Dataset Citation

Kruitwagen, Lucas, Story, Kyle, Friedrich, Johannes, Byers, Logan, Skillman, Sam, & Hepburn, Cameron. (2021). A global
inventory of solar photovoltaic generating units - dataset (1.0.0) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.5005868

Earth Engine Snippet

var predicted_set = ee.FeatureCollection("projects/sat-io/open-datasets/global_photovoltaic/predicted_set");
var cv_polygons = ee.FeatureCollection("projects/sat-io/open-datasets/global_photovoltaic/cv_polygons");
var cv_tiles = ee.FeatureCollection("projects/sat-io/open-datasets/global_photovoltaic/cv_tiles");
var test_polygons = ee.FeatureCollection("projects/sat-io/open-datasets/global_photovoltaic/test_polygons");
var test_tiles = ee.FeatureCollection("projects/sat-io/open-datasets/global_photovoltaic/test_tiles");
var trn_tiles = ee.FeatureCollection("projects/sat-io/open-datasets/global_photovoltaic/trn_tiles");
var trn_polygons = ee.FeatureCollection("projects/sat-io/open-datasets/global_photovoltaic/trn_polygons");

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-utilities-assets-amenities/GLOBAL-PHOTOVOLTAICS-INVENTORY

Layer name and description table

File Name Description
trn_tiles 18,570 rectangular areas-of-interest used for sampling training patch data.
trn_polygons 36,882 polygons obtained from OSM in 2017 used to label training patches
cv_tiles 560 rectangular areas-of-interest used for sampling cross-validation data seeded from WRI GPPDB
cv_polygons 6,281 polygons corresponding to all PV solar generating units present in cv_tiles at the end of 2018.
test_tiles 122 rectangular regions-of-interest used for building the test set.
test_polygons 7,263 polygons corresponding to all utility-scale (>10kW) solar generating units present in test_tiles at the end of 2018.
predicted_set 68,661 polygons corresponding to predicted polygons in global deployment, capturing the status of deployed photovoltaic solar energy generating capacity at the end of 2018.

License

Creative Commons Attribution 4.0 International License

Created by: Kruitwagen et al

Curated by: Samapriya Roy

Keywords: photovoltaic solar remote sensing geospatial data computer vision

Last updated: 2021-10-28

 

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。